Summary

人工程心脏组织的收缩自动分析心脏药物安全筛选

Published: April 15, 2017
doi:

Summary

在这里,我们将展示人体工程心脏组织的产生从诱导多能干细胞(hiPSC细胞)衍生的心肌细胞。我们呈现由hERG通道抑制剂E-4031来分析收缩力和收缩图案的示例性改变的方法。这种方法显示的鲁棒性和适用性强心药物筛选的高水平。

Abstract

心脏组织工程技术描述以构成三维力产生工程化组织。对于在基础研究和临床前药物开发这些程序的执行,必须制定规范条件下的自动生成和分析的协议是非常重要的。在这里,我们提出了一种技术来生成来自不同物种(大鼠,小鼠,人)的心肌细胞工程化的心脏组织(EHT)。该技术依赖于含有聚二甲基硅氧烷弹性(PDMS)柱之间解离的心肌细胞在24孔格式的血纤维蛋白凝胶的组装。三维的,力生成EHTs铸造后构成两个星期内。此过程允许每周几百EHTs的产生和在技术上由心肌细胞的可用性只有有限的(0.4-1.0×10 6 / EHT)。 auxotonic肌肉收缩的评价是在修改的孵育室与mechan执行对24孔板的iCal联锁,并放置在该腔室的顶部上的照相机。软件控制了摄像机的XYZ轴系统到每个EHT上移动。 EHT收缩是由一个自动数字识别算法检测到,并且力是基于EHT的缩短和弹性倾向和几何形状的PDMS帖子的计算。该方法允许标准化并在无菌条件下高数EHT的自动分析。对心肌收缩药物效果的可靠检测心脏药物开发和安全药理学的关键。我们证明,与hERG通道抑制剂E-4031的例子,该人的EHT系统上复制人的心脏收缩动力学药物反应,这表明它是心脏药物安全性筛选一个行之有效的手段。

Introduction

心脏的副作用,如药物性长QT综合征导致市场撤回在过去几年里。统计数据表明,所有提款的约45%是由于心血管系统1的不良影响。这种昂贵的发展过程和批准后药物失效是制药公司最糟糕的情况。因此,研究和开发部门重点检测的这种不良心血管作用早期。出于经济和伦理问题,努力减少动物实验,并与新的体外筛选测定代替他们正在进行中。

一组建立了试验的包括在美国食品和药物管理局(FDA)和欧洲药品管理局(EMA)为致心律失常药物作用2临床前评价的准则。体细胞重编程,随后分化的技术人类诱导多能干细胞(hiPSC细胞)推动这一研究领域3。它现在提供了屏幕人心肌细胞的新候选药物的可能性,并避免与物种间的差异问题。最近的心脏分化协议4,5不提供伦理关怀心肌无限量供应。然而,收缩力,最重要的,最特征的心肌细胞的活体参数测量,没有很好地建立起来。这与人类诱导多能干细胞衍生的心肌细胞(的hiPSC-CM)相比,成人心肌细胞作为相对不成熟6。一种可能的改进是从单电池7(工程化的心脏组织,EHT)工程师3维心脏组织。的EHT协议基于嵌入单个鼠或人心肌8 </SUP>,9,10中的两个柔性聚二甲基硅氧烷(PDMS)柱11在24孔格式之间的纤维蛋白水凝胶。在几天之内的心肌细胞开始为单个细胞自发性收缩,并开始形成蜂窝网络。后7-10天,整个组织的宏观收缩可见。在此过程中的细胞外基质被重塑,从而导致直径和长度的减少。的EHT结果在PDMS的弯曲的缩短剩余时间内,即使后,在显影EHT到连续负载使心肌细胞。 EHTs继续在几个星期内进行auxotonic肌肉收缩。人类EHTs显示对生理和药理刺激指示它们用于药物筛选和疾病建模7适应性应答。

在这个手稿中,我们提出了一个generati强大和易于协议对人类EHT,和在hERG通道抑制剂存在收缩图案的浓度依赖性变化自动收缩的分析。

Protocol

注意:下面的步骤描述了一种细胞培养协议。请在无菌条件下进行,并使用预热媒体。 1.的hiPSC的心脏分化 培养的hiPSC 涂层6孔板(1毫升/孔)或T75烧瓶(7毫升/瓶)具有减少的生长因子基底膜基质( 例如 geltrex,1:200;见的材料表)的Dulbecco改良的Eagle培养基中稀释(DMEM),用于在37℃下30分钟。通过混合制备FTDA介质12基本DMEM …

Representative Results

心脏分化和EHT的制备的hiPSC分别在低生长因子基底膜基质膨胀,用EDTA和形成在旋转烧瓶过夜胚体(EB)解离。中胚层诱导3天后,心脏分化与Wnt抑制剂的启动。后分化方案的〜17天,跳动将EB解离为单细胞的II型胶原酶( 图1)。 EHTs从新鲜分离的心肌细胞制备每100μL的组织1.0×10 6个细胞的EB解离( 图2)</st…

Discussion

工程心脏组织提供了一个有价值的选择,以心血管疾病研究的工具盒。在24井EHTs已经为疾病建模8,14,药品安全筛选7,8,10,11,15,或基本心血管研究16,17证明是有价值的。

<p class…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者非常感谢亚历山德拉·莫雷蒂和丹尼斯·施德其材料的实物捐助。我们承认,在实验药理学和UKE的毒理学部的大力支持IP和EHT工作组。作者的作品是由来自DZHK(德国中心心血管研究)和德国教育与研究部(BMBF),德国研究基金会(DFG居88 / 12-1,HA 3423 / 5-1资金支持),英国国家中心更换细化和在研究动物的减少(NC3Rs CRACK-IT授予35911-259146),英国心脏基金会的RM /30157分之13,欧洲研究理事会(高级格兰特IndivuHeart),德国心脏基金会和柏林自由UND Hansestadt汉堡。

Materials

EHT analysis intrument EHT Technologies GmbH A0001 Software is included
EHT PDMS rack EHT Technologies GmbH C0001
EHT PTFE spacer EHT Technologies GmbH C0002
EHT electrode EHT Technologies GmbH P0001
EHT pacing adapter/cable EHT Technologies GmbH P0002
24-well-plate Nunc 144530
6 well-cell culture plate Nunc 140675
15 ml falcon tube, graduated  Sarstedt 62,554,502
Cell scraper Sarstedt 831,830
Spinner flask Integra 182 101
Stirrer Variomag/ Cimarec Biosystem Direct  Thermo scientific 70101 Adjust rotor speed to 40 rpm
T175 cell culture flask  Sarstedt  831,812,002
V-shaped sedimentation rack  Custom made at UKE Hamburg na
10× DMEM Gibco 52100
1-Thioglycerol  Sigma Aldrich M6145
2-Phospho-L-ascorbic acid trisodium salt Sigma Aldrich 49752
Activin-A  R&D systems 338-AC
Agarose  Invitrogen 15510-019
Aprotinin Sigma Aldrich A1153
Aqua ad injectabilia Baxter GmbH 1428
B27 PLUS insulin  Gibco 17504-044
BMP-4 R&D systems 314-BP
Collagenase II  Worthington LS004176
DMEM Biochrom F0415
DMSO  Sigma Aldrich D4540
DNase II, type V (from bovine spleen) Sigma  D8764
Dorsomorphin  abcam ab120843
EDTA  Roth 8043.2
Fetal calf serum Gibco 10437028
FGF2 Miltenyi Biotec 130-104-921
Fibrinogen (bovine) Sigma Aldrich F8630
Geltrex  Gibco A1413302 For coating: 1:200 dilution
HBSS w/o Ca2+/Mg2+  Gibco 14175-053
HEPES  Roth 9105.4
Horse serum Life technologies 26050088
Human serum albumin  Biological Industries 05-720-1B
Insulin, human Sigma Aldrich I9278
L-Glutamin Gibco 25030-024
Lipidmix  Sigma Aldrich L5146
Matrigel BD Biosciences 354234 For EHT reconsitutionmix.
N-Benzyl-p-Toluenesulfonamide TCI B3082-25G
PBS w/o MgCl2/CaCl2 Biochrom 14190
Penicillin/Streptomycin Gibco 15140
Pluronic F-127  Sigma Aldrich P2443
Polyvinyl alcohol  Sigma Aldrich P8136
RPMI 1640  Gibco 21875
Sodium selenite Sigma Aldrich S5261
TGFß1 Peprotech 100-21
Thrombin Sigma Aldrich T7513
Transferrin  Sigma Aldrich T8158
Y-27632 Biorbyt orb6014
hiPSC Custom made at UKE hamburg na
iCell cardiomyocytes kit Cellular Dynamics International CMC-100-010-001
Pluricyte cardiomyocyte kit Pluriomics PCK-1.5
Cor.4U – HiPSC cardiomyocytes kit Axiogenesis AG Ax-C-HC02-FR3
Cellartis cardiomyocytes Takara Bio USA, Inc. Y10075

References

  1. Laverty, H. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines?. Br J Pharmacol. 163 (4), 675-693 (2011).
  2. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  3. Burridge, P. W. Chemically defined generation of human cardiomyocytes. Nat Methods. 11 (8), 855-860 (2014).
  4. Kempf, H., Kropp, C., Olmer, R., Martin, U., Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc. 10 (9), 1345-1361 (2015).
  5. Yang, X., Pabon, L., Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 114 (3), 511-523 (2014).
  6. Mannhardt, I. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports. 7 (1), 29-42 (2016).
  7. Eder, A. Effects of proarrhythmic drugs on relaxation time and beating pattern in rat engineered heart tissue. Bas Res Cardiol. 109 (6), 436 (2014).
  8. Stöhr, A. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice. J Mol Cell Cardiol. 63, 189-198 (2013).
  9. Schaaf, S. Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology. PLoS One. 6 (10), e26397 (2011).
  10. Hansen, A. Development of a drug screening platform based on engineered heart tissue. Circ Res. 107 (1), 35-44 (2010).
  11. Frank, S., Zhang, M., Schöler, H. R., Greber, B. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PloS One. 7 (7), e41958 (2012).
  12. Lanier, M. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: A structure-activity relationship study based on inhibitors for the Wnt response. J Med Chem. 55 (2), 697-708 (2012).
  13. Hirt, M. N. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Bas Res Cardiol. 107 (6), 307-323 (2012).
  14. Jacob, F. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS One. 11 (2), e0145937 (2016).
  15. Friedrich, F. W. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet. 21 (14), 3237-3254 (2012).
  16. Crocini, C. Impact of ANKRD1 mutations associated with hypertrophic cardiomyopathy on contraction parameters of engineered heart tissue. Bas Res Cardiol. 108 (3), 349 (2013).
  17. Fiedler, J. Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization. J Am Coll Cardiol. 66 (18), 2005-2015 (2015).
  18. van Meer, B. J. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophysl Res Commun. , (2016).
  19. Godier-Furnémont, A. F. G. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials. 60, 82-91 (2015).
  20. Eng, G. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 7, 10312 (2016).
  21. Huebsch, N. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. Sci Rep. 6 (24726), 1-12 (2016).
  22. Masumoto, H. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep. 6 (29933), 1-10 (2016).
  23. Ravenscroft, S. M., Pointon, A., Williams, A. W., Cross, M. J., Sidaway, J. E. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues. Toxicol Sci. 152 (1), 99-112 (2016).
  24. Zhang, J. H., Chung, T. D. Y., Oldenbutg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 4 (2), 67-73 (1999).
  25. Vandenburgh, H. Durg-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve. 37 (4), 438-447 (2008).
check_url/55461?article_type=t&slug=automated-contraction-analysis-human-engineered-heart-tissue-for

Play Video

Cite This Article
Mannhardt, I., Saleem, U., Benzin, A., Schulze, T., Klampe, B., Eschenhagen, T., Hansen, A. Automated Contraction Analysis of Human Engineered Heart Tissue for Cardiac Drug Safety Screening. J. Vis. Exp. (122), e55461, doi:10.3791/55461 (2017).

View Video