Summary

逆转录病毒扫描:映射MLV集成站点以定义细胞特异性监管区域

Published: May 28, 2017
doi:

Summary

在这里,我们描述了人类细胞中基于Moloney小鼠白血病病毒的逆转录病毒载体的整合位点全基因组图谱的方案。

Abstract

莫洛尼鼠白血病(MLV)病毒的逆转录病毒载体主要集中在乙酰化增强子和启动子中。因此,mLV整合位点可用作活性调节元件的功能标记。在这里,我们提出了一种逆转录病毒扫描工具,可以在全基因组范围内鉴定细胞特异性增强子和启动子。简言之,用mLV衍生的载体转导靶细胞群,并用经常切割的限制酶消化基因组DNA。在用相容的DNA接头连接基因组片段后,连接子介导的聚合酶链反应(LM-PCR)允许扩增病毒宿主基因组连接。扩增子的大规模测序用于在全基因组范围内定义mLV整合谱。最后,定义了复发整合的集群,以确定细胞特异性调节区域,负责细胞型特异性转录程序的激活。

<p class=“jove_content”>逆转录病毒扫描工具可以在前瞻性分离的靶细胞群体中全基因组鉴定细胞特异性启动子和增强子。值得注意的是,逆转录病毒扫描是用于回顾性鉴定稀有群体( 例如体细胞干细胞)的工具技术,其缺乏用于预期分离的鲁棒标记物。

Introduction

细胞同一性由特定基因组的表达决定。顺式调节元件(如启动子和增强子)的作用对于细胞型特异性转录程序的激活至关重要。这些调节区域的特征在于特定的染色质特征,例如特异性组蛋白修饰,转录因子和辅因子结合以及染色质可及性,其已被广泛用于在几种细胞类型1,2,3中的全基因组鉴定。特别地,组蛋白H3赖氨酸27(H3K27ac)的乙酰化的全基因组谱通常用于定义活性启动子,增强子和超增强子4,5,6

莫洛尼鼠白血病病毒(MLV)是广泛用于基因的γ-逆转录病毒转移哺乳动物细胞。感染靶细胞后,逆转录病毒RNA基因组被逆转录在双链DNA分子中,其结合病毒和细胞蛋白以组装前整合复合物(PIC)。 PIC进入核并结合宿主细胞染色质。在这里,病毒整合酶,一个关键的PIC组件,介导前病毒DNA整合到宿主细胞基因组。基因组DNA中的mLV整合不是随机的,而是发生在活性顺式调节元件(如启动子和增强子)中,细胞特异性方式为7,8,9,10 。这种特异的整合特征是通过mLV整合酶和细胞溴结构域和外切域(BET)蛋白质11,12,13之间的直接相互作用来介导的。 BET蛋白(BRD2,BRD3,BRD4)作为宿主染色质和mLV PIC之间的桥梁:通过它们的溴结构域,它们识别高度乙酰化的顺式调节区,而外发区与mLV整合酶11,12,13相互作用。

在这里,我们描述了逆转录病毒扫描,一种基于mLV的整合性质绘制活性顺式调节区的新工具。简言之,用表达增强的绿色荧光蛋白(eGFP)报道基因的来自mLV的逆转录病毒载体转导细胞。在基因组DNA提取后,通过连接物介导的PCR(LM-PCR)扩增mLV载体的3'末端重复序列(LTR)和基因组DNA之间的连接并进行大规模测序。 mLV整合位点被映射到人类基因组,并且由mLV高度靶向的基因组区域被定义为mLV整合位点的簇。

逆转录病毒扫描ning用于在几个人类原代细胞14,15 定义细胞特异性活性调节元件。 mLV簇与表观遗传学定义的启动子和增强子共同定位,其中大部分含有活性组蛋白标记,如H3K27ac,并且是细胞特异性的。逆转录病毒扫描允许在前瞻性纯化的细胞群体中的DNA调节元件的全基因组鉴定7,14以及缺乏有效标记物的回顾性定义的细胞群(例如角质形成细胞干细胞) 15

Protocol

人类细胞的MLV转导 分离靶细胞并用携带eGFP报告基因的mLV衍生的逆转录病毒载体转导它们,并用水泡性口炎病毒G(VSV-G)或单调性包膜糖蛋白16假型。 将模拟转导细胞作为阴性对照进行以下分析。由于基于mLV的逆转录病毒载体可以转导有效分裂的细胞,在刺激细胞分裂的条件下培养靶细胞群体。需要针对研究中的每种细胞类型,特异性优化转导条件。人…

Representative Results

逆转录病毒扫描程序的工作流程逆转录病毒扫描程序的工作流程如图1所示 。用表达eGFP报告基因的mLV衍生的逆转录病毒载体纯化并转导靶细胞群。转基因侧翼是两个相同的长末端重复序列(5'和3'LTR),确保病毒基因组合成,逆转录和整合到宿主DNA中。通过FACS分析eGFP表达来评估转导效率。扩增含有高?…

Discussion

在这里,我们描述了一个针对染色质区域的逆转录病毒mLV的整合位点的全基因组映射方案,表观遗传标记为活性启动子和增强子。方案的关键步骤和/或限制包括:(i)目标细胞群的mLV转导; (ii)通过LM-PCR扩增病毒宿主结; (iii)检索高比例的整合站点。基于mLV的逆转录病毒载体有效转导分裂细胞。非分裂细胞(例如有丝分裂后神经元细胞)的转导效率低是该技术的潜在限制。然而,可以通过基?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由欧洲研究委员会(ERC-2010-AdG,GT-SKIN),意大利教育,大学和研究部(2010年Ricerca的FIRB-Futuro-RBFR10OS4G,2012年Ricerca的FIRB-Futuro-RBFR126B8I_003)的赠款支持,EPIGEN Epigenomics旗舰项目),意大利卫生部(Young Research Call 2011 GR-2011-02352026)和Imagine研究所基金会(法国巴黎)。

Materials

PBS, pH 7.4 ThermoScientific 10010031 or equivalent
Fetal Bovine Serum ThermoScientific 16000044 or equivalent
0.2 ml tubes general lab supplier
1.5 ml tubes general lab supplier
QIAGEN QIAmp DNA mini Kit  QIAGEN 51306 or equivalent
T4 DNA ligase  New England BioLabs M0202T
T4 DNA Ligase Reaction buffer New England BioLabs M0202T
Linker Plus Strand oligonucleotide general lab supplier 5’-PO4-TAGTCCCTTAAGCGGAG-3’  (Purification grade: SDS-PAGE)
Linker Minus Strand oligonucleotide general lab supplier 5’-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC-3’ (Purification grade: SDS-PAGE)
Tru9I Roche-Sigma-Aldrich 11464825001
SuRE/Cut Buffer M Roche-Sigma-Aldrich 11417983001
PstI  Roche-Sigma-Aldrich 10798991001
SuRE/Cut Buffer H Roche-Sigma-Aldrich 11417991001
Platinum Taq DNA Polimerase High Fidelity  Invitrogen 11304011
10mM dNTP Mix Invitrogen 18427013 or equivalent
PCR grade water general lab supplier
96-well thermal cycler (with heated lid) general lab supplier
linker primer general lab supplier 5’-GTAATACGACTCACTATAGGGC-3’ (Purification grade: PCR grade)
MLV-3’ LTR primer general lab supplier 5’-GACTTGTGGTCTCGCTGTTCCTTGG-3’ (Purification grade: PCR grade)
linker nested primer 454 general lab supplier 5’-GCCTTGCCAGCCCGCTCAG[AGGGCTCCGCTTAAGGGAC](Purification grade: SDS-PAGE)
MLV-3’ LTR nested primer 454 general lab supplier 5’-GCCTCCCTCGCGCCATCAGTAGC[GGTCTCCTCTGAGTGATTGACTACC](Purification grade: SDS-PAGE)
linker nested primer Illumina general lab supplier 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-[AGGGCTCCGCTTAAGGGAC](Purification grade: SDS-PAGE)
MLV-3’ LTR nested primer Illumina general lab supplier 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[GGTCTCCTCTGAGTGATTGACTACC](Purification grade: SDS-PAGE)
Sodium Acetate Solution (3M) pH 5.2 general lab supplier
Ethanol (absolute) for molecular biology Sigma-Aldrich E7023 or equivalent
Topo TA Cloning kit (with pCR2.1-TOPO vector) Invitrogen K4500-01
QIAquick Gel Extraction kit QIAGEN 28704
Agarose Sigma-Aldrich A9539 or equivalent
Ethidium bromide  Sigma-Aldrich E1510 or equivalent
100 bp DNA ladder Invitrogen 15628019 or equivalent
6X Loading Buffer ThermoScientific R0611 or equivalent
NanoDrop 2000 UV-Vis Spectrophotometer ThermoScientific ND-2000
Nextera XT Index kit Illumina FC-131-1001 or FC-131-1002
2x KAPA HiFi Hot Start Ready Mix  KAPA Biosystems KK2601
Dynal magnetic stand for 2 ml tubes Invitrogen 12321D or equivalent
Agencourt AMPure XP 60 ml kit Beckman Coulter Genomics A63881
Tris-HCl 10 mM, pH 8.5 general lab supplier
Agilent 2200 TapeStation system Agilent Technologies G2964AA or equivalent
D1000 ScreenTape Agilent Technologies 5067-5582 or equivalent
D1000 Reagents Agilent Technologies 5067-5583 or equivalent
KAPA Library Quantification Kit for Illumina platforms (ABI Prism) KAPA Biosystems KK4835
ABI Prism 7900HT Fast Real-Time PCR System Applied Biosystems 4329003
NaOH 1.0 N, molecular biology-grade general lab supplier
HT1 (Hybridization Buffer) Illumina  Provided in the MiSeq Reagent Kit
MiSeq Reagent Kit v3 (150 cycles) Illumina MS-102-3001
MiSeq System Illumina SY-410-1003
PhiX Control v3 Illumina FC-110-3001

References

  1. Ernst, J., et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 473 (7345), 43-49 (2011).
  2. Shlyueva, D., Stampfel, G., Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 15 (4), 272-286 (2014).
  3. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature. 518 (7539), 317-330 (2015).
  4. Heintzman, N. D., et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459 (7243), 108-112 (2009).
  5. Creyghton, M. P., et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 107 (50), 21931-21936 (2010).
  6. Hnisz, D., et al. Super-enhancers in the control of cell identity and disease. Cell. 155 (4), 934-947 (2013).
  7. Cattoglio, C., et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood. 116 (25), 5507-5517 (2010).
  8. Biasco, L., et al. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med. 3 (2), 89-101 (2011).
  9. De Ravin, S. S., et al. Enhancers are major targets for murine leukemia virus vector integration. J Virol. 88 (8), 4504-4513 (2014).
  10. LaFave, M. C., et al. mLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 42 (7), 4257-4269 (2014).
  11. Gupta, S. S., et al. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol. 87 (23), 12721-12736 (2013).
  12. Sharma, A., et al. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A. 110 (29), 12036-12041 (2013).
  13. De Rijck, J., et al. The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell reports. 5 (4), 886-894 (2013).
  14. Romano, O., et al. Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Sci Rep. 6, 24724 (2016).
  15. Cavazza, A., et al. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation. Stem Cell Reports. 6 (4), 618-632 (2016).
  16. Miller, A. D., Law, M. F., Verma, I. M. Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol. 5 (3), 431-437 (1985).
  17. Cattoglio, C., et al. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One. 5 (12), e15688 (2010).
  18. Aiuti, A., et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 341 (6148), 1233151 (2013).
  19. Biffi, A., et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 341 (6148), 1233158 (2013).
  20. Gabriel, R., et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 15 (12), 1431-1436 (2009).
  21. Gillet, N. A., et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 117 (11), 3113-3122 (2011).
check_url/55919?article_type=t

Play Video

Cite This Article
Romano, O., Cifola, I., Poletti, V., Severgnini, M., Peano, C., De Bellis, G., Mavilio, F., Miccio, A. Retroviral Scanning: Mapping MLV Integration Sites to Define Cell-specific Regulatory Regions. J. Vis. Exp. (123), e55919, doi:10.3791/55919 (2017).

View Video