Summary

망막 화상 진 찰을 사용 하 여 치 매 공부 하기

Published: November 06, 2017
doi:

Summary

망막 뇌와 눈에 띄는 유사성을 공유 하 고 따라서 비 접촉 맥 관 구조와 뇌의 신경 구조를 공부 하는 독특한 창을 나타냅니다. 이 프로토콜에는 망막 이미징 기술을 사용 하 여 치 매를 공부 하는 방법을 설명 합니다. 이 방법은 잠재적으로 치 매 진단 및 위험 평가에 도움이 됩니다.

Abstract

망막은 독특한 “창” 중앙 신경 조직 (CNS)의 확장 이며 embryological 기원, 해 부 특징의 관점에서 뇌와 눈에 띄는 유사성을 공유로 치 매는 뇌에서의 병 태 생리 과정을 공부 하 고 생리 적 속성입니다.  망막의 혈관과 신경 구조 비 접촉 사용 하 여 쉽게 시각 망막 이미징 기술, 저 사진 등 광학 일관성 단층 촬영 (OCT), 그리고 반자동으로 사용 하 여 측정할 수 있습니다. 컴퓨터 기반 분석 프로그램입니다. 망막의 혈관과 신경 변화 및 치 매 사이 연결 공부 수 치 매에 대 한 우리의 이해를 향상 하 고, 잠재적으로, 진단 및 위험 평가에.  이 프로토콜 측정 하 고 잠재적으로 치 매와 관련 된 망막 맥 관 구조 및 신경 구조를 분석 하는 방법을 설명 하는 것을 목표로. 이 프로토콜도 치 매, 망막 과목 변경의 예를 제공 하 고 기술 문제 및 망막 화상의 현재 제한 사항에 설명 합니다.

Introduction

때문에 평균 수명 증가, 치 매 주요 의료 문제, 중요 한 사회에 기여 하 고 경제 건강 부담 세계적으로1,2,3,,45. 오늘, 미국에서 사람이 Alzheimer의 질병 (광고), 치 매, 모든 66 s6의 가장 일반적인 형태는 발전 한다. 그것은 2050 년까지 115 백만 사람들 것 이다 영향을 받을 광고7추정 되었다.

망막 뇌와 비슷한 해 부 및 생리 적 속성으로 인해 치 매 연구에 독특한 “창”을 제공 합니다. 맥 관 구조, 망막 arterioles 및 venules, 100 ~ 300 µ m 직경, 측정 끝 arterioles anastomoses, 장벽 기능 및 자동 제어8, 등 대뇌 작은 혈관과 비슷한 기능을 공유 9. 신경 구조, 망막 절 셀 (RGCs) 중앙 신경 시스템 (CNS) 10에에서 신경을 가진 일반적인 속성을 공유. 그들이 형성 측면 geniculate 핵을 우량한 colliculus 망막에서 시 신경 및 프로젝트 시각적 신호는 RGCs 눈에 띄게 두뇌와 연결 됩니다. 시 신경, CNS에 많은 신경 섬유와 유사한 oligodendrocytes에 의해 myelinated 이며 ensheathed meningeal 계층에 있습니다. 특히, 시 신경에 대 한 모욕이 될 수 있습니다 유사한 응답 다른 CNS 축 삭에서 관찰와 같은 역행 및 축 삭, 흉터 형성, myelin 파괴, 2 차 변성 및 科의 비정상적인 수준 참가자 변성 요인과 신경 전달 물질11,12,,1314. 일부 광고 환자에 시각적인 증 후의 외관 또한 망막 및 두뇌15,16간의 강력한 연결에 의해 설명 수 있습니다. 결과적으로, 그것은 제안 되었습니다 망막 치 매는 뇌에서의 병 적인 프로세스를 반영 수 있습니다 및 망막 화상 치 매 연구에 사용할 수 있습니다.

망막 맥 관 구조 및 신경 구조 지금 비 접촉 망막 이미징 기술을 사용 하 여 구상 될 수 있다. 예를 들어, 망막 저 사진 저 카메라를 사용 하 여 캡처할 수 있습니다 및 망막 맥 관 구조 (예: 선박 구경, tortuosity, 그리고 프랙탈 차원)의 특성 수 다음 측정할 수 컴퓨터 기반 분석을 사용 하 여 프로그램입니다. 또한, 매개 변수 (예: 신경 절의 세포 내 plexiform 레이어 [GC-IPL] 및 망막 신경 섬유 층 [RNFL]의 두께) 망막 신경 구조 또한 광학 일관성 단층 촬영 (OCT)를 사용 하 여 측정 될 수 있다 및 내장을 사용 하 여 정량 분석 알고리즘입니다.

치 매를 공부 하 고 망막 화상의 중요성에 비추어이 프로토콜 이미징 및 망막 맥 관 구조 및 신경 구조에 vivo에서 망막 이미징 기술을 사용 하 여 분석 하는 방법을 설명 하는 것을 목표로. 이 프로토콜도 치 매, 망막 과목 변경의 예를 제공 하 고 기술 문제 및 망막 화상의 현재 제한 사항에 설명 합니다.

Protocol

여기에서 설명한 모든 방법을 홍콩에서 지역 임상 연구 윤리 위원회에 의해 승인 되었습니다. 참고: 단순, 장비 재료의 테이블에에서 나열 된 망막 이미징 및 후속 분석의 절차를 설명 하기 위해 사용 됩니다. 망막 혈관 매개 변수 측정 싱가포르 I 선박 평가 프로그램 (시바) 17 (버전 4.0, 국립 싱가포르 대학교, 싱가포르)를 사용 하 여 보여 줍니?…

Representative Results

그림 10: 일반 주제와 광고 주제 망막 맥 관 구조에 차이 보여 예. 일반적인 주제에 비교 될 때 광고 주제의 저 사진 보여 좁은 그릇 구경 (CRAE 영역 B의, 116.4 µ m 대 156.4 µ m; 영역 B, 186.9 µ m 대 207.5 µ m; CRVE CRAE 영역 C, 138.5 µ m 대 165.8 µ m; 영역 C, 206.6 µ m <…

Discussion

이 프로토콜 비보에망막에 있는 신경 및 혈관 변화 측정의 절차를 설명 합니다. 망막은 뇌와 비슷한 embryological 기원, 기능 해 부 및 생리 속성 공유로이 망막 변화 맥 관 구조와 뇌의 신경 구조와 유사한 변화를 반영 수 있습니다.

그림 10표 1에 표시 된 것 처럼 광고 주제 감소 선박 개조 건강 한 주제에 비교 될 때 보였다. 그것은 알…

Disclosures

The authors have nothing to disclose.

Acknowledgements

잠재적인 금융 관계에 관한 저자 티 엔 영 웡이이 문서에서 사용 되는 싱가포르 I 선박 평가 (시바) 프로그램의 공동 발명자 이다.

Materials

Non-mydriatic Retinal Camera  Topcon, Inc, Tokyo, Japan TRC 50DX  N/A
Singapore I Vessel Assessment Program National University of Singapore Version 4.0 N/A
CIRRUS HD-OCT  Carl Zeiss Meditec, Inc, Dublin, CA Model 4000 N/A
Mydriatic Agents  N/A N/A Prepared from 1% tropicamide and 2.5% phenylephrine hydrochloride

References

  1. Alzheimer’s Disease International. The prevalence of dementia worldwide. Alzheimer’s Dis. Int. (December), 1-2 (2008).
  2. Wimo, A., Winblad, B., &Jönsson, L. The worldwide societal costs of dementia: Estimates for 2009. Alzheimer’s Dement. 6 (2), 98-103 (2010).
  3. Comas-Herrera, A., Northey, S., Wittenberg, R., Knapp, M., Bhattacharyya, S., Burns, A. Future costs of dementia-related long-term care: exploring future scenarios. Int. Psychogeriatr. 23 (1), 20-30 (2011).
  4. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10 (2), e47-e92 (2014).
  5. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., Ferri, C. P. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers. Dement. 9 (1), 63-75 (2013).
  6. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 12 (4), 459-509 (2016).
  7. Asih, P. R., Chatterjee, P., Verdile, G., Gupta, V. B., Trengove, R. D., Martins, R. N. Clearing the amyloid in Alzheimer’s: progress towards earlier diagnosis and effective treatments – an update for clinicians. Neurodegener. Dis. Manag. 4 (5), 363-378 (2014).
  8. Cheung, C. Y., Ikram, M. K., Chen, C., Wong, T. Y. Imaging retina to study dementia and stroke. Prog. Retin. Eye Res. , (2017).
  9. Patton, N., Aslam, T., Macgillivray, T., Pattie, A., Deary, I. J., Dhillon, B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206 (4), 319-348 (2005).
  10. London, A., Benhar, I., Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9 (1), 44-53 (2013).
  11. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N., Beattie, M. S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 3 (1), 73-76 (1997).
  12. Levkovitch-Verbin, H., Quigley, H. A., Kerrigan-Baumrind, L. A., D’Anna, S. A., Kerrigan, D., Pease, M. E. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 42 (5), 975-982 (2001).
  13. Levkovitch-Verbin, H., Quigley, H. A., Martin, K. R., Zack, D. J., Pease, M. E., Valenta, D. F. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci. 44 (8), 3388-3393 (2003).
  14. Yoles, E., Schwartz, M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol. 153 (1), 1-7 (1998).
  15. Sadun, A. A., Borchert, M., DeVita, E., Hinton, D. R., Bassi, C. J. Assessment of Visual Impairment in Patients With Alzheimer’s Disease. Am. J. Ophthalmol. 104 (2), 113-120 (1987).
  16. Schlotterer, G., Moscovitch, M., Crapper-Mclachlan, D. Visual processing deficits as assessed by spatial frequency contrast sensitivity and backward masking in normal ageing and alzheimer’s. Brain. 107 (1), 309-324 (1984).
  17. Cheung, C. Y. L., et al. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation. 17 (7), 495-503 (2010).
  18. Knudtson, M. D., Lee, K. E., Hubbard, L. D., Wong, T. Y., Klein, R., Klein, B. E. K. Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 27 (3), 143-149 (2003).
  19. Hubbard, L. D., et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology. 106 (12), 2269-2280 (1999).
  20. Patton, N., et al. The association between retinal vascular network geometry and cognitive ability in an elderly population. Investig. Ophthalmol. Vis. Sci. 48 (5), 1995-2000 (2007).
  21. VanHecke, M. V., et al. Are retinal microvascular abnormalities associated with large artery endothelial dysfunction and intima-media thickness? The Hoorn Study. Clin. Sci. London Engl. 110 (5), 597-604 (2006).
  22. Tien, Y. W., et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: The Multi-Ethnic Study of Atherosclerosis (MESA). Investig. Ophthalmol. Vis. Sci. 47 (6), 2341-2350 (2006).
  23. Leung, H., et al. Relationships between age, blood pressure, and retinal vessel diameters in an older population. Investig. Ophthalmol. Vis. Sci. 44 (7), 2900-2904 (2003).
  24. Wong, T. Y., et al. The prevalence and risk factors of retinal microvascular abnormalities in older persons: The cardiovascular health study. Ophthalmology. 110 (4), 658-666 (2003).
  25. Ikram, M. K., et al. Retinal vessel diameters and risk of stroke: The Rotterdam Study. Neurology. 66 (9), 1339-1343 (2006).
  26. Wong, T. Y., Knudtson, M. D., Klein, R., Klein, B. E. K., Meuer, S. M., Hubbard, L. D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology. 111 (6), 1183-1190 (2004).
  27. Sasongko, M. B., et al. Alterations in retinal microvascular geometry in young type 1 diabetes. Diabetes Care. 33 (6), 1331-1336 (2010).
  28. Cheung, C. Y. L., et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology. 118 (5), 812-818 (2011).
  29. Mainster, M. a The fractal properties of retinal vessels: embryological and clinical implications. Eye. 4 ( Pt 1) (1), 235-241 (1990).
  30. Liew, G., et al. The Retinal Vasculature as a Fractal: Methodology, Reliability, and Relationship to Blood Pressure. Ophthalmology. 115 (11), (2008).
  31. Stosic, T., Stosic, B. D. Multifractal analysis of human retinal vessels. IEEE Trans. Med. Imaging. 25 (8), 1101-1107 (2006).
  32. Zamir, M., Medeiros, J. A., Cunningham, T. K. &. a. m. p. ;. M., Zamir, J. A., Medeiros, T. K. C. Arterial bifurcations in the human retina. J. Gen. Physiol. 74 (4), 537-548 (1979).
  33. Mwanza, J. C., Oakley, J. D., Budenz, D. L., Chang, R. T., Knight, O. J., Feuer, W. J. Macular ganglion cell-inner plexiform layer: Automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Investig. Ophthalmol. Vis. Sci. 52 (11), 8323-8329 (2011).
  34. Bendschneider, D., et al. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J. Glaucoma. 19 (7), 475-482 (2010).
  35. Cheung, C. Y., Ong, Y. T., Ikram, M. K., Chen, C., Wong, T. Y. Retinal Microvasculature in Alzheimer’s Disease. J. Alzheimer’s Dis. 42 (s4), S339-S352 (2014).
  36. Murray, C. D. THE PHYSIOLOGICAL PRINCIPLE OF MINIMUM WORK APPLIED TO THE ANGLE OF BRANCHING OF ARTERIES. J. Gen. Physiol. (4), 835-841 (1926).
  37. Ding, J., et al. Early retinal arteriolar changes and peripheral neuropathy in diabetes. Diabetes Care. 35 (5), 1098-1104 (2012).
  38. Yim, C., et al. Retinal Ganglion Cell Analysis Using High-Definition Optical Coherence Tomography in Patients with Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimer’s Dis. Retin. Ganglion Cell Anal. MCI AD. 45 (1), 45-56 (2015).
  39. Stein, D. M., Wollstein, G., Ishikawa, H., Hertzmark, E., Noecker, R. J., Schuman, J. S. Effect of Corneal Drying on Optical Coherence Tomography. Ophthalmology. 113 (6), 985-991 (2006).
  40. Mwanza, J. C., et al. Effect of Cataract and its Removal on Signal Strength and Peripapillary Retinal Nerve Fiber Layer Optical Coherence Tomography Measurements. J. Glaucoma. 20 (1), 37-43 (2011).
  41. Garcia-Martin, E., et al. Influence of cataract surgery on optical coherence tomography and neurophysiology measurements in patients with retinitis pigmentosa. Am. J. Ophthalmol. 156 (2), (2013).
  42. Kok, P. H. B., et al. The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography. Acta Ophthalmol. , (2012).
  43. Kim, N. R., et al. Influence of cataract on time domain and spectral domain optical coherence tomography retinal nerve fiber layer measurements. J. Glaucoma. 21 (2), 116-122 (2012).
  44. Hwang, Y. H., Kim, Y. Y. Effect of Peripapillary Vitreous Opacity on Retinal Nerve Fiber Layer Thickness Measurement Using Optical Coherence Tomography. Arch. Ophthalmol. 130 (6), 789-792 (2012).
  45. Schwartz, S. G., Flynn, H. W., Fisher, Y. L. "Floater scotoma" demonstrated on spectral-domain optical coherence tomography and caused by vitreous opacification. Ophthalmic Surg. Lasers Imaging Retina. 44 (4), 415-418 (2013).
  46. Frost, S., et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry. 3 (2), e233 (2013).
  47. Cheung, C. Y., et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimer’s Dement. 10 (2), 135-142 (2014).
  48. DeJong, F. J., et al. Retinal vascular caliber and risk of dementia: The Rotterdam Study. Neurology. 76 (9), 816-821 (2011).
  49. Cheung, C. Y., et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J. Hypertens. 29 (7), 1380-1391 (2011).
  50. Cheung, C. Y., et al. Retinal vascular fractal dimension and its relationship with cardiovascular and ocular risk factors. Am. J. Ophthalmol. 154 (4), 663-674 (2012).
  51. Cheung, C. Y. L., et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology. 118 (5), 812-818 (2011).
  52. Grinton, M. E., et al. The association between retinal vessel morphology and retinal nerve fiber layer thickness in an elderly population. Ophthalmic Surg. Lasers Imaging. 43 (6 Suppl), S61-S66 (2012).
  53. Hughes, A. D., et al. Quantification of topological changes in retinal vascular architecture in essential and malignant hypertension. J. Hypertens. 24 (5), 889-894 (2006).
  54. Hughes, A. D., et al. Determinants of retinal microvascular architecture in normal subjects. Microcirculation. 16 (2), 159-166 (2009).
  55. Lau, Q. P., Lee, M. L., Hsu, W., Wong, T. Y. The Singapore Eye Vessel Assessment System. Image Anal. Model. Ophthalmol. , 143-160 (2014).
  56. Thomas, G. N., et al. Measurement of Macular Fractal Dimension Using a Computer-Assisted Program. Investig. Opthalmology Vis. Sci. 55 (4), 2237 (2014).
  57. Murray, C. D. The physiological principle of minimal work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. 12, 207-214 (1926).
  58. Cheung, C., Chen, C., Wong, T. Ocular Fundus Photography as a Tool to Study Stroke and Dementia. Semin. Neurol. 35 (5), 481-490 (2015).
  59. Williams, M. A., et al. Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 1 (2), 229-235 (2015).
  60. Cheung, C. Y., et al. Retinal Vascular Fractal Dimension Is Associated with Cognitive Dysfunction. J. Stroke Cerebrovasc. Dis. 23 (1), 43-50 (2014).
  61. Hammes, H. P., et al. Diabetic retinopathy: targeting vasoregression. Diabetes. 60 (1), 9-16 (2011).
  62. Cheung, C. Y., et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimer’s Dement. 10 (2), 135-142 (2014).
  63. Frame, M. D., Sarelius, I. H. Arteriolar bifurcation angles vary with position and when flow is changed. Microvasc Res. 46 (2), 190-205 (1993).
  64. Djonov, V., Baum, O., Burri, P. H. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 314 (1), 107-117 (2003).
  65. Griffith, T. M., Edwards, D. H. Basal EDRF activity helps to keep the geometrical configuration of arterial bifurcations close to the Murray optimum. J. Theor. Biol. 146 (4), 545-573 (1990).
  66. Griffith, T. M., Edwards, D. H., Randall, M. D. Blood flow and optimal vascular topography: role of the endothelium. Basic Res. Cardiol. 86 Suppl 2, 89-96 (1991).
  67. Chapman, N., Haimes, G., Stanton, A. V., Thom, S. A. M., Hughes, A. D. Acute effects of oxygen and carbon dioxide on retinal vascular network geometry in hypertensive and normotensive subjects. Clin. Sci. 99 (6), 483-488 (2000).
  68. Heringa, S. M., Bouvy, W. H., van denBerg, E., Moll, A. C., Jaap Kappelle, L., Jan Biessels, G. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review. J. Cereb. blood flow Metab. 33 (7), 983-995 (2013).
  69. Ding, J., et al. Diabetic retinopathy and cognitive decline in older people with type 2 diabetes: The Edinburgh type 2 diabetes study. Diabetes. 59 (11), 2883-2889 (2010).
  70. Parisi, V., Restuccia, R., Fattapposta, F., Mina, C., Bucci, M. G., Pierelli, F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin. Neurophysiol. 112 (10), 1860-1867 (2001).
  71. Paquet, C., Boissonnot, M., Roger, F., Dighiero, P., Gil, R., Hugon, J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 420 (2), 97-99 (2007).
  72. Moschos, M. M., et al. Structural and functional impairment of the retina and optic nerve in Alzheimer’s disease. Curr. Alzheimer Res. 9 (7), 782-788 (2012).
  73. Lu, Y., et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: Evidence in optical coherence tomography. Neurosci. Lett. 480 (1), 69-72 (2010).
  74. Kesler, A., Vakhapova, V., Korczyn, A. D., Naftaliev, E., Neudorfer, M. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin. Neurol. Neurosurg. 113 (7), 523-526 (2011).
  75. Ascaso, F. J., et al. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: An optical coherence tomography study. J. Neurol. 261 (8), 1522-1530 (2014).
  76. Berisha, F., Feke, G. T., Trempe, C. L., McMeel, J. W., Schepens, C. L. Retinal abnormalities in early Alzheimer’s disease. Investig. Ophthalmol. Vis. Sci. 48 (5), 2285-2289 (2007).
  77. Iseri, P. K., Altinaş, O., Tokay, T., Yüksel, N. Relationship between Cognitive Impairment and Retinal Morphological and Visual Functional Abnormalities in Alzheimer Disease. J. Neuro-Ophthalmology. 26 (1), 18-24 (2006).
  78. Garcia-Martin, E. S., et al. Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology. 121 (5), 1149-1151 (2014).
  79. Ko, F., et al. Retinal Nerve Fiber Layer Thinning Associated With Poor Cognitive Function Among A Large Cohort, The Uk Biobank. Alzheimer’s Dement. 12 (7), P317-P318 (2016).
  80. Moreno-Ramos, T., Benito-Leon, J., Villarejo, A., Bermejo-Pareja, F. Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J. Alzheimers. Dis. 34 (3), 659-664 (2013).
  81. Moschos, M. M., et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur. J. Ophthalmol. 21 (1), 24-29 (2011).
  82. Garcia-Martin, E., et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology. 119 (10), 2161-2167 (2012).
  83. Yip, W., et al. Comparison of Common Retinal Vessel Caliber Measurement Software and a Conversion Algorithm. Transl. Vis. Sci. Technol. 5 (5), 11 (2016).
  84. Gorelick, P. B., et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 42 (9), 2672-2713 (2011).
  85. Brown, W. R., Thore, C. R. Review: Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37 (1), 56-74 (2011).
  86. DeSilva, T. M., Faraci, F. M. Microvascular Dysfunction and Cognitive Impairment. Cell. Mol. Neurobiol. 36 (2), 241-258 (2016).
  87. Kalaria, R. N., Akinyemi, R., Ihara, M. Does vascular pathology contribute to Alzheimer changes?. J. Neurol. Sci. 322 (1-2), 141-147 (2012).
  88. Kling, M. A., Trojanowski, J. Q., Wolk, D. A., Lee, V. M. Y., Arnold, S. E. Vascular disease and dementias: paradigm shifts to drive research in new directions. Alzheimers. Dement. 9 (1), 76-92 (2013).
  89. O’Brien, J. T., et al. Vascular cognitive impairment. Lancet Neurol. 2 (2), 89-98 (2003).
  90. Chen, C., et al. Alzheimer’s disease with cerebrovascular disease: current status in the Asia-Pacific region. J. Intern. Med. 280 (4), 359-374 (2016).
  91. Pérez, M. A., Bruce, B. B., Newman, N. J., Biousse, V. The use of retinal photography in nonophthalmic settings and its potential for neurology. Neurologist. 18 (6), 350-355 (2012).
  92. Boppart, S. A. Optical coherence tomography: Technology and applications for neuroimaging. Psychophysiology. 40 (4), 529-541 (2003).
  93. Hee, M. R., et al. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113 (3), 325-332 (1995).
  94. Huang, D., et al. Optical coherence tomography. Science (80-.). 254 (5035), 1178-1181 (1991).
  95. vanVelthoven, M. E. J., Verbraak, F. D., Yannuzzi, L., Rosen, R. B., Podoleanu, A. G. H., deSmet, M. D. Imaging the retina by en face optical coherence tomography. Retina. 26 (2), 129-136 (2006).
  96. Costa, R. A., et al. Retinal assessment using optical coherence tomography. Prog. Retin. Eye Res. 25 (3), 325-353 (2006).
  97. DeBuc, D. C., Somfai, G. M., Ranganathan, S., Tátrai, E., Ferencz, M., Puliafito, C. A. Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software. J. Biomed. Opt. 14 (6), 64023 (2009).
  98. Budenz, D. L., et al. Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology. 114 (6), 1046-1052 (2007).
  99. Leung, C. K. S., et al. Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography: A Prospective Analysis of Age-Related Loss. Ophthalmology. 119 (4), 731-737 (2012).
  100. Cettomai, D., et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch. Neurol. 65 (9), 1218-1222 (2008).
  101. Garcia-Martin, E., Pinilla, I., Idoipe, M., Fuertes, I., Pueyo, V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT. Acta Ophthalmol. 89 (1), (2011).
  102. Garcia-Martin, E., Pueyo, V., Pinilla, I., Ara, J. R., Martin, J., Fernandez, J. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest. Ophthalmol. Vis. Sci. 52 (7), 4124-4131 (2011).
  103. Menke, M. N., Knecht, P., Sturm, V., Dabov, S., Funk, J. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Invest. Ophthalmol. Vis. Sci. 49 (12), 5386-5391 (2008).
  104. Mwanza, J. C., et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 51 (11), 5724-5730 (2010).
  105. Syc, S. B., et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler. 16 (7), 829-839 (2010).
  106. Ikram, M. K., Cheung, C. Y., Wong, T. Y., Chen, C. P. L. H. Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 83 (9), 917-922 (2012).
  107. MacGillivray, T. J., Trucco, E., Cameron, J. R., Dhillon, B., Houston, J. G., vanBeek, E. J. R. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br. J. Radiol. 87 (1040), 20130832 (2014).
  108. Patton, N., et al. Retinal image analysis: Concepts, applications and potential. Prog. Retin. Eye Res. 25 (1), 99-127 (2006).
  109. McGrory, S., et al. The application of retinal fundus camera imaging in dementia: A systematic review. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 6, 91-107 (2017).
  110. Wong, T. Y., Knudtson, M. D., Klein, R., Klein, B. E. K., Meuer, S. M., Hubbard, L. D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors. Ophthalmology. 111 (6), 1183-1190 (2004).
  111. Hardin, J. S., Taibbi, G., Nelson, S. C., Chao, D., Vizzeri, G. Factors Affecting Cirrus-HD OCT Optic Disc Scan Quality: A Review with Case Examples. J. Ophthalmol. 2015, 1-16 (2015).
  112. Kim, N. R., et al. Influence of Cataract on Time Domain and Spectral Domain Optical Coherence Tomography Retinal Nerve Fiber Layer Measurements. J. Glaucoma. 1, (2010).
  113. Li, H., et al. Lens opacity and refractive influences on the measurement of retinal vascular fractal dimension. Acta Ophthalmol. 88 (6), e234-e240 (2010).
  114. Maberley, D., Morris, A., Hay, D., Chang, A., Hall, L., Mandava, N. A comparison of digital retinal image quality among photographers with different levels of training using a non-mydriatic fundus camera. Ophthalmic Epidemiol. 11 (3), 191-197 (2004).
  115. Rochtchina, E., Wang, J. J., Taylor, B., Wong, T. Y., Mitchell, P. Ethnic variability in retinal vessel caliber: A potential source of measurement error from ocular pigmentation?-The Sydney childhood eye study. Investig. Ophthalmol. Vis. Sci. 49 (4), 1362-1366 (2008).
  116. Wainwright, A., et al. Effect of image quality, color, and format on the measurement of retinal vascular fractal dimension. Investig. Ophthalmol. Vis. Sci. 51 (11), 5525-5529 (2010).
  117. Nguyen, T. T., Wong, T. Y. Retinal vascular manifestations of metabolic disorders. Trends Endocrinol. Metab. 17 (7), 262-268 (2006).
  118. Ding, J., et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J. Hypertens. 32 (2), 207-215 (2014).
  119. Nguyen, T. T., Wong, T. Y. Retinal vascular changes and diabetic retinopathy. Curr. Diab. Rep. 9 (4), 277-283 (2009).
  120. Leung, C. K. S., Ye, C., Weinreb, R. N., Yu, M., Lai, G., Lam, D. S. Impact of Age-related Change of Retinal Nerve Fiber Layer and Macular Thicknesses on Evaluation of Glaucoma Progression. Ophthalmology. 120 (12), 2485-2492 (2013).
  121. Sherry, L. M., et al. Reliability of computer-assisted retinal vessel measurement in a population. Clin. Experiment. Ophthalmol. 30 (3), 179-182 (2002).
  122. Wardlaw, J. M., et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12 (8), 822-838 (2013).
  123. Patton, N., Aslam, T., MacGillivray, T., Pattie, A., Deary, I. J., Dhillon, B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: A rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206 (4), 319-348 (2005).
  124. Ferri, C. P., et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 366 (9503), 2112-2117 (2005).
  125. Sahadevan, S., et al. Ethnic differences in Singapore’s dementia prevalence: The stroke, Parkinson’s disease, epilepsy, and dementia in Singapore study. J. Am. Geriatr. Soc. 56 (11), 2061-2068 (2008).
  126. Kernt, M., et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography. Diabetes Care. 35 (12), 2459-2463 (2012).
  127. Manivannan, A., Plskova, J., Farrow, A., Mckay, S., Sharp, P. F., Forrester, J. V. Ultra-wide-field fluorescein angiography of the ocular fundus. Am. J. Ophthalmol. 140 (3), 525-527 (2005).
  128. Pellegrini, E., et al. Blood vessel segmentation and width estimation in ultra-wide field scanning laser ophthalmoscopy. Biomed. Opt. Express. 5 (12), 4329 (2014).
  129. Estrada, R., Tomasi, C., Schmidler, S. C., Farsiu, S. Tree topology estimation. IEEE Trans. Pattern Anal. Mach. Intell. 37 (8), 1688-1701 (2015).

Play Video

Cite This Article
Chan, V. T., Tso, T. H., Tang, F., Tham, C., Mok, V., Chen, C., Wong, T. Y., Cheung, C. Y. Using Retinal Imaging to Study Dementia. J. Vis. Exp. (129), e56137, doi:10.3791/56137 (2017).

View Video