Summary

I Vitro differentiering Model af menneskets normale hukommelse B celler til langlivede plasmaceller

Published: January 20, 2019
doi:

Summary

Brug Multi-trins kultur systemer, rapportere vi en in vitro-B-celle til plasma celle differentiering model.

Abstract

Plasma celler (pc’er) udskiller store mængder af antistoffer og udvikle fra B-celler, der er blevet aktiveret. Pc’er er sjældne celler i knoglemarven eller slimhinde og sikre humorale immunitet. På grund af deres lave hyppighed og placering, studiet af pc’er er vanskeligt i human. Vi rapporterede en B til PC in vitro-differentiering model ved hjælp af udvalgte kombinationer af cytokiner og aktivering molekyler, der gør det muligt for at gengive sekventielle Celledifferentiering sker in vivo. I denne in vitro model, hukommelse B-celler (MBCs) vil differentiere i pre plasmablasts (prePBs), plasmablasts (PBs), tidligt pc’er og endelig til langlivede tæt pc’er, med en fænotype med deres modstykker i raske personer. Vi har også bygget en åben adgang bioinformatik værktøjer til at analysere de mest fremtrædende oplysninger fra GEP data relateret til PC differentiering. Disse ressourcer kan bruges til at studere menneskelige B til PC differentiering og i den aktuelle undersøgelse, vi undersøgte udtryk genregulering af epigenetiske faktorer under menneskelige B til PC differentiering.

Introduction

Differentiering af B-celler til plasma celler (pc’er) er afgørende for humorale immunitet og beskytte værten mod infektioner1. B at differentiering af PC er forbundet med større ændringer i transskription kapacitet og stofskifte til at rumme at antistof sekretion. Transkriptionsfaktorer, der styrer B til PC differentiering er blevet grundigt undersøgt og afsløret eksklusive netværk herunder B – og PC-specifikke transskription faktorer (TFs)2. I B-celler er PAX5, BCL6 og BACH2 TFs vogtere af B-celle identitet2,3. Induktion af IRF4, PRDM1 BLIMP1 og XBP1 PC TF-kodning vil slukke B celle gener og fremkalde en koordineret antistof-secernerende celle transcriptional program3,4,5. Disse koordineret transcriptional ændringer er forbundet med Ig gener transskription aktivering sammen med et skift fra formen membran-bundet til formularen udskilles af immunoglobulin tunge kæde2,3, 4. B til PC differentiering er forbundet med induktion af gener involveret i endoplasmatiske reticulum og Golgi apparatet fungerer samtidig med udfoldet protein svar (UPR) aktivering kendt for at spille en nøglerolle i PC af imødekommende syntesen af udskilles immunoglobuliner6,7. TF XBP1 spiller en stor rolle i denne cellulære tilpasning8,9,10.

B-celler og pc’er er centrale aktører i humorale immunitet. Forstå biologiske processer, der styrer produktionen og overlevelse af normale plasma celler er kritisk i terapeutiske indgreb, som skal sikre effektiv immunrespons og forhindre autoimmunitet eller immundefekt. PC er sjældne celler med differentiering vorden finder sted i anatomiske steder, der hæmmer fuld biologiske karakterisering, især i human. Brug Multi-trins kultur systemer, har vi rapporteret en in vitro-B til PC differentiering model. Denne model gengiver den sekventielle Celledifferentiering og modning forekommer i de forskellige organer i vivo11,12,13,. I et første skridt, hukommelse B-celler er først aktiveret for fire dage af CD40 ligand, oligodeoxynucleotides og cytokin kombination og differentiere i preplasmablasts (PrePBs). I et andet trin, er preplasmablasts tilskyndet til at differentiere i plasmablasts (PBs) ved at fjerne CD40L og oligodeoxynucleotides stimulation og ændre cytokin kombination. I en tredje trin, er plasmablasts tilskyndet til at differentiere i tidlige pc’er ved at ændre cytokin kombination11,12. En fjerde trin blev indført for at få fuldt modne pc’er ved dyrkning af disse tidlige pc’er med knoglemarv stromale celler aircondition medium eller valgt vækstfaktorer13. Disse ældre pc’er kunne overleve flere måneder in vitro- og udskiller store mængder af immunglobulin (figur 1). Interessant, sammenfatter vores in vitro-modellen de koordinerede transcriptional ændringer og fænotype af forskellige B til PC faser, der kan blive opdaget i vivo11,12,13,14 ,15. Pc’er er sjældne celler og vores in vitro-differentiering model giver mulighed for at studere menneskelige B til PC differentiering.

Protocol

Protokollen følger retningslinjer i overensstemmelse med Helsinki-erklæringen og aftale af Montpellier Universitet Hospital Centre for biologiske ressourcer. 1. i Vitro Normal Plasma celle differentiering Model Bemærk: Pc’er der genereres gennem en fire-trins kultur11,12,13. B-celle forstærkning og differentiering B…

Representative Results

Den generelle procedure af in vitro-normal PC differentiering er repræsenteret i figur 1. Ved hjælp af protokollen præsenteres her, kan vi generere tilstrækkelig mængde af celler, der ikke kunne opnås med ex vivo menneskelige prøver. Selv om rollen, de komplekse netværk af transskriptionsfaktorer involveret i PC differentiering er blevet undersøgt, forbliver de mekanismer, der regulerer nøgle PC differentiering transskription netværk dårligt kendt…

Discussion

I human, PC er sjældne celler med differentiering stadier finder sted i anatomiske steder, der hæmmer fuld biologiske karakterisering. Vi har udviklet en in vitro-B til PC differentiering model ved hjælp af flertrins kultur systemer hvor forskellige kombinationer af aktivering molekyler og cytokiner anvendes efterfølgende for at gengive sekventielle celle differentieringen forekommer i den forskellige organer/væv i vivo11,12,13</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af tilskud fra franske INCA (Institut National du kræft) Institute (PLBIO15-256), ANR (slips-spring) og ITMO kræft (MM & TT).

Materials

anti-CD2 magnetic beads Invitrogen 11159D
Anti-CD138-APC Beckman-Coulter  B49219
Anti-CD19-APC BD 555415
Anti-CD20-PB Beckman-Coulter  B49208
Anti-CD27-PE BD 555441
Anti-CD38-PE Beckman-Coulter  A07779
Anti-histidine R&D Systems MAB050
CpG ODN(PT) Sigma T*C*G*T*C*G*T*T*T*T*G*T*C*
G*T*T*T*T*G*T*C*G*T*T
human Transferin Sigma-Aldrich T3309
IFN-α Merck Intron A
IMDM Gibco 31980-022
Recombinan Human CD40L-hi R&D Systems 2706-CL
Recombinant Human APRIL R&D Systems 5860-AP-010
Recombinant Human IL-10 R&D Systems 217-IL-
Recombinant Human IL-15 Peprotech 200-15-10ug
Recombinant Human IL-2 Protein R&D Systems 202-IL-
Recombinant Human IL-6 Peprotech 200-06

References

  1. Shapiro-Shelef, M., Calame, K. Regulation of plasma-cell development. Nature Reviews Immunology. 5 (3), 230-242 (2005).
  2. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M., Corcoran, L. M. The generation of antibody-secreting plasma cells. Nature Reviews Immunology. 15 (3), 160-171 (2015).
  3. Shaffer, A. L., et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 17 (1), 51-62 (2002).
  4. Minnich, M., et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunology. 17 (3), 331-343 (2016).
  5. Klein, U., et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunology. 7 (7), 773-782 (2006).
  6. Gass, J. N., Gunn, K. E., Sriburi, R., Brewer, J. W. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends in Immunology. 25 (1), 17-24 (2004).
  7. Goldfinger, M., Shmuel, M., Benhamron, S., Tirosh, B. Protein synthesis in plasma cells is regulated by crosstalk between endoplasmic reticulum stress and mTOR signaling. European Journal of Immunology. 41 (2), 491-502 (2011).
  8. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107 (7), 881-891 (2001).
  9. Shaffer, A. L., et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 21 (1), 81-93 (2004).
  10. Reimold, A. M., et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 412 (6844), 300-307 (2001).
  11. Jourdan, M., et al. Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. Journal of Immunology. 187 (8), 3931-3941 (2011).
  12. Jourdan, M., et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood. 114 (25), 5173-5181 (2009).
  13. Jourdan, M., et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia. , (2014).
  14. Kassambara, A., et al. Global miRNA expression analysis identifies novel key regulators of plasma cell differentiation and malignant plasma cell. Nucleic Acids Research. 45 (10), 5639-5652 (2017).
  15. Kassambara, A., et al. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLOS Computational Biology. 11 (1), 1004077 (2015).
  16. Miremadi, A., Oestergaard, M. Z., Pharoah, P. D., Caldas, C. Cancer genetics of epigenetic genes. Human Molecular Genetics. 16, 28-49 (2007).
  17. Pei, H., et al. The histone methyltransferase MMSET regulates class switch recombination. Journal of Immunology. 190 (2), 756-763 (2013).
  18. Le Gallou, S., et al. IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling. Journal of Immunology. 189 (1), 161-173 (2012).
  19. Cocco, M., et al. In vitro generation of long-lived human plasma cells. Journal of Immunology. 189 (12), 5773-5785 (2012).
  20. Leung-Hagesteijn, C., et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 24 (3), 289-304 (2013).
  21. Orlowski, R. Z. Why proteasome inhibitors cannot ERADicate multiple myeloma. Cancer Cell. 24 (3), 275-277 (2013).
  22. Ding, B. B., Bi, E., Chen, H., Yu, J. J., Ye, B. H. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. Journal of Immunology. 190 (4), 1827-1836 (2013).
  23. Tsai, C. M., et al. Galectin-1 promotes immunoglobulin production during plasma cell differentiation. Journal of Immunology. 181 (7), 4570-4579 (2008).
  24. Tsai, C. M., et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. Journal of Immunology. 187 (4), 1643-1652 (2011).
  25. Anginot, A., Espeli, M., Chasson, L., Mancini, S. J., Schiff, C. Galectin 1 modulates plasma cell homeostasis and regulates the humoral immune response. Journal of Immunology. 190 (11), 5526-5533 (2013).
  26. Belnoue, E., et al. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. Journal of Immunology. 188 (3), 1283-1291 (2012).
  27. Belnoue, E., et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood. 111 (5), 2755-2764 (2008).
  28. Huard, B., et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. Journal of Clinical Investigation. 118 (8), 2887-2895 (2008).
  29. Ame-Thomas, P., et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 109 (2), 693-702 (2007).
  30. Ramachandrareddy, H., et al. BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells. Proceedings of the National Academy of Sciences of the United States of America. 107 (26), 11930-11935 (2010).
  31. Li, G., Zan, H., Xu, Z., Casali, P. Epigenetics of the antibody response. Trends in Immunology. 34 (9), 460-470 (2013).
  32. Miles, R. R., Crockett, D. K., Lim, M. S., Elenitoba-Johnson, K. S. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Molecular & Cellular Proteomics. 4 (12), 1898-1909 (2005).
  33. McManus, S., et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. The EMBO Journal. 30 (12), 2388-2404 (2011).
  34. Ahmadnejad, M., et al. Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Research. 52 (1), 25-30 (2017).
  35. Beguelin, W., et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 23 (5), 677-692 (2013).
  36. Herviou, L., Cavalli, G., Cartron, G., Klein, B., Moreaux, J. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget. 7 (3), 2284-2296 (2016).
  37. Beguelin, W., et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nature Communications. 8 (1), 877 (2017).
  38. Herviou, L., et al. PRC2 targeting is a therapeutic strategy for EZ score defined high-risk multiple myeloma patients and overcome resistance to IMiDs. Clinical Epigenetics. 10 (1), 121 (2018).
  39. Asangani, I. A., et al. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Molecular Cell. 49 (1), 80-93 (2013).
  40. Pei, H., et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 470 (7332), 124-128 (2011).
  41. Cui, J., et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell International. 15 (1), 4 (2015).
  42. Santo, L., et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 119 (11), 2579-2589 (2012).
  43. Amengual, J. E., et al. Dual Targeting of Protein Degradation Pathways with the Selective HDAC6 Inhibitor ACY-1215 and Bortezomib Is Synergistic in Lymphoma. Clinical Cancer Research. 21 (20), 4663-4675 (2015).
  44. Schoenhals, M., et al. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage. Cell Cycle. 15 (14), 1919-1928 (2016).
check_url/58929?article_type=t

Play Video

Cite This Article
Jourdan, M., de Boussac, H., Viziteu, E., Kassambara, A., Moreaux, J. In Vitro Differentiation Model of Human Normal Memory B Cells to Long-lived Plasma Cells. J. Vis. Exp. (143), e58929, doi:10.3791/58929 (2019).

View Video