Summary

宿主病原学反应及疫苗效果评价

Published: February 22, 2019
doi:

Summary

在这里, 我们提出了一个优雅的协议, 在体内评估疫苗的有效性和宿主免疫反应。该协议可适用于研究病毒、细菌或寄生虫病原体的疫苗模型。

Abstract

疫苗是20世纪医学奇迹 。它们大大降低了传染病造成的发病率和死亡率, 并促使全球预期寿命显著延长。尽管如此, 确定疫苗的疗效仍然是一个挑战。新出现的证据表明, 目前的无细胞疫苗 (apv) 为百日咳杆菌 (百日咳 b.) 诱导次优免疫。因此, 一个主要的挑战是设计下一代疫苗, 在不产生全细胞疫苗 (wpv) 不利副作用的情况下诱导保护性免疫。在这里, 我们描述了一个协议, 我们用来测试一个有前途的, 新颖的佐剂的疗效, 扭曲免疫反应的保护性 thenth17 表型, 并促进更好地清除 b .百日咳挑战从小鼠呼吸道。本文介绍了小鼠免疫、细菌接种、组织采集和免疫反应分析的方案。利用这种方法, 在我们的模型中, 我们成功地阐明了一种有希望的下一代无细胞百日咳疫苗所引发的关键机制。该方法可应用于任何传染病模型, 以确定疫苗疗效。

Introduction

疫苗是20世纪最伟大的公共卫生成就之一, 但我们仍然没有完全理解成功疫苗刺激保护性免疫的机制。疫苗接种后诱导的分子特征 (细胞激活标记、细胞亚型的扩展和基因表达模式) 的鉴定为预测和生成有效的信息提供了大量信息。免疫反应。在体外细胞培养系统1中无法充分复制宿主病原体反应的复杂性。体内疫苗模型旨在同时评估宿主内的多种免疫细胞类型。这提供了一个优势, 当描述疫苗抗原处理和呈现, 差异细胞因子分泌, 和扩大免疫细胞的特点。这里描述的协议提供了一个详细的方法来确定疫苗的疗效, 通过评估系统和局部免疫反应和量化病原体负担的有关组织。这里提供的例子测试了百日咳博德氏杆菌 (百日咳 b. b.)实验疫苗的有效性。

百日咳是一种革兰氏阴性细菌, 是呼吸道疾病百日咳 (百日咳)2,3的病因。与受感染的人密切接触 (有症状或无症状) 会导致传播、定植和疾病。尽管全球疫苗覆盖率很高, 但百日咳在世界许多国家被认为是一种重新出现的疾病, 是可预防的儿童死亡主要原因 5,6,7,8. 2015年,百日咳和百日咳被列入国家过敏和传染病研究所 (niaid) 新出现的传染性病原病/疾病清单, 强调需要开发一种更好的疫苗, 使其长寿保护免疫。

目前, 控制百日咳复发的一个活跃的研究领域是开发下一代无细胞百日咳疫苗 (apv), 该疫苗具有新型佐剂和抗原的最佳组合, 以模拟全细胞产生的免疫反应百日咳疫苗 (wpv)9。使用所描述的协议, 我们最近报告说, 通过添加一种新型佐剂 bordetella 殖民因子 a (bcfa), 对目前 fda 批准的 apv 进行了修改, 从而更有效地减少了百日咳细菌的负荷。鼠肺10,11。这种增加的保护伴随着对更具保护性的 ththth这家免疫剖面10的铝诱导的 ththuth2 免疫反应倾斜。该议定书是详细和全面的, 使调查员能够通过同时评估宿主和免疫对各种病原体的反应, 获得最大限度的信息。

这里描述的协议遵循具有代表性的疫苗计划, 如图 1所示, 以确保最佳的宿主免疫反应。

Protocol

所有活体动物实验都是根据俄亥俄州立大学 iacuc 根据 iacuc 的指导方针批准的协议进行的。c57bl6 小鼠被用于所有免疫接种和感染。根据国家卫生研究院的指导, 每组都使用雄性和雌性小鼠。根据实验组结果的预测差异, 通过功率计算确定了每组动物的数量。例如, 每组8只小鼠在α= 0.05 (双面) 时产生80% 的功率,进行2样本 t-测试, 以检测1.33 标准差 (sds) 的兴趣结果的差异。 1. ?…

Representative Results

所描述的模型显示了一种评估疫苗效率和宿主-病原体相互作用过程中免疫反应的方法。图 1描述了用于免疫和感染小鼠和采集组织进行分析的代表性疫苗计划。图 2显示了用于诱导小鼠的麻醉系统的设置, 使研究人员能够进行免疫接种和细菌接种。图 3显示了 od600的示例测量和计算, 以实现 1 od 细菌…

Discussion

这里描述的研究疫苗诱导的百日咳感染免疫的综合方案也将允许评估宿主对各种其他病原体的反应。该协议讨论了提供免疫接种的方法, 确定疫苗在病原体挑战后的疗效, 以及免疫功能的平行解剖。为了研究其他病原体, 在调整该议定书时, 需要修改几个参数。这些措施包括但不限于动物麻醉的方式、疫苗组成、剂量和给药途径。此外, 受质疑的病原体的剂量和给药途径、收获所选组织和免疫…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了俄亥俄州立大学10112556-01 兰特和启动资金的支持。

Materials

2L induction chamber Vet Equip 941444
Fluriso Vet One V1 501017 any brand is appropriate
Bordet Gengou Agar Base BD bioscience 248200
Casein Sigma C-7078
Casamino acids VWR J851-500G Strainer Scholte (SS) media components
L-Glutamic acid Research Products Int G36020-500
L-Proline Research Products Int P50200-500
Sodium Chloride Fisher BP358-10
Potassium Phosphate monobasic Fisher BP362-1
Potassium Chloride Fisher P217-500
Magnesium Chloride hexahydrate Fisher M2670-500G
Calcium Chloride Fisher C75-500
Tris base Fisher BP153-1
L-cysteine HCl Fisher BP376-100 SS media suplements
Ferrous Sulfate heptahydrate Sigma F-7002
Niacin Research Products Int N20080-100
Glutathione Research Products Int G22010-25
Ascorbic acid Research Products Int A50040-500
RPMI 1640 ThermoFisher Scientific 11875093
FBS Sigma F2442-500mL  any US source, non-heat inactivated
gentamicin ThermoFisher Scientific 15710064
B-mercaptoethanol Fisher  BP176-100
15mL dounce tissue grinder Wheaton 357544 any similar brand is appropriate
Cordless Hand Homogenizer Kontes/Sigma  Z359971-1EA any similar brand is appropriate
Instruments – scissors, curve scissors, forceps, fine forceps, triangle spreaders any brand is appropriate
3mL syringes BD bioscience 309657
15mL conical tubes Fisher  339651
1.5mL microfuge tubes Denville C2170
70um cell strainers Fisher  22363548
60mm plates ThermoFisher Scientific 130181
48-well tissue culture plates ThermoFisher Scientific 08-772-1C
1mL insulin syringe 28G1/2 Fisher Scientific/Excel Int. 14-841-31
Mouse IFN-gamma ELISA Ready-SET-Go! Kit Invitrogen / eBioscience 50-173-21
Mouse IL-17 ELISA Ready-SET-Go! Kit Invitrogen / eBioscience 50-173-77
Mouse IL-5 ELISA Ready-SET-Go! Kit Invitrogen / eBioscience 50-172-09

References

  1. Tacken, P. J., Figdor, C. G. Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Seminars in Immunology. 23 (1), 12-20 (2011).
  2. Kilgore, P. E., Salim, A. M., Zervos, M. J., Schmitt, H. J. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clinical Microbiology Reviews. 29 (3), 449-486 (2016).
  3. Dorji, D., et al. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Medical Microbiology and Immunology. 207 (1), 3-26 (2018).
  4. Feldstein, L. R., et al. Global Routine Vaccination Coverage, 2016. Morbidity and Mortality Weekly Report. 66 (45), 1252-1255 (2017).
  5. Cherry, J. D. Epidemic pertussis in 2012–the resurgence of a vaccine-preventable disease. New England Journal of Medicine. 367 (9), 785-787 (2012).
  6. Celentano, L. P., et al. Resurgence of pertussis in Europe. The Pediatric Infectious Disease Journal. 24 (9), 761-765 (2005).
  7. McNabb, S. J., et al. Summary of notifiable diseases. Morbidity and Mortality Weekly Report p. 54 (53), 1-92 (2007).
  8. Sealey, K. L., Belcher, T., Preston, A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, Genetics, and Evolution. 40, 136-143 (2016).
  9. Warfel, J. M., Merkel, T. J. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Reviews of Vaccines. 13 (10), 1241-1252 (2014).
  10. Jennings-Gee, J., et al. The adjuvant Bordetella Colonization Factor A attenuates alum-induced Th2 responses and enhances Bordetella pertussis clearance from mouse lungs. Infection and Immunity. , (2018).
  11. Sukumar, N., Mishra, M., Sloan, G. P., Ogi, T., Deora, R. Differential Bvg phase-dependent regulation and combinatorial role in pathogenesis of two Bordetella paralogs, BipA and BcfA. Journal of Bacteriology. 189 (10), 3695-3704 (2007).
  12. Stainer, D. W., Scholte, M. J. A simple chemically defined medium for the production of phase I Bordetella pertussis. Journal of General Microbiology. 63 (2), 211-220 (1970).
  13. Bordet, J. Le microbe de le coqueluche. Annales de l’Institut Pasteur. 20, 731-741 (1906).
  14. Cook, M. J. . The Anatomy of the Laboratory Mouse. , (1965).
  15. Sutton, S. Accuracy of Plate Counts. Journal of Validation Techniques. 17 (3), 42-46 (2011).
  16. Conover, M. S., Sloan, G. P., Love, C. F., Sukumar, N., Deora, R. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Molecular Microbiology. 77 (6), 1439-1455 (2010).
  17. Cattelan, N., Jennings-Gee, J., Dubey, P., Yantorno, O. M., Deora, R. Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infection and Immunity. 85 (12), (2017).
  18. Andreasen, C., Carbonetti, N. H. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infection and Immunity. 76 (11), 5139-5148 (2008).
  19. Mills, K. H., Gerdts, V. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis. Journal of Infectious Diseases. 209, 16-19 (2014).
  20. Dunne, A., et al. A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunology. 8 (3), 607-617 (2015).
  21. Denoel, P., Godfroid, F., Guiso, N., Hallander, H., Poolman, J. Comparison of acellular pertussis vaccines-induced immunity against infection due to Bordetella pertussis variant isolates in a mouse model. Vaccine. 23 (46-47), 5333-5341 (2005).
  22. Marr, N., et al. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine. 26 (34), 4306-4311 (2008).
  23. Feunou, P. F., Bertout, J., Locht, C. T- and B-cell-mediated protection induced by novel, live attenuated pertussis vaccine in mice. Cross protection against parapertussis. PLoS One. 5 (4), 10178 (2010).
  24. Mills, K. H., Ryan, M., Ryan, E., Mahon, B. P. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infection and Immunity. 66 (2), 594-602 (1998).
  25. Higgs, R., Higgins, S. C., Ross, P. J., Mills, K. H. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunology. 5 (5), 485-500 (2012).
  26. Alving, C. R. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine. 20, 56-64 (2002).
  27. Ipp, M. M., et al. Adverse reactions to diphtheria, tetanus, pertussis-polio vaccination at 18 months of age: effect of injection site and needle length. Pediatrics. 83 (5), 679-682 (1989).
  28. Fessard, C., Riche, O., Cohen, J. H. Intramuscular versus subcutaneous injection for hepatitis B vaccine. Vaccine. 6 (6), 469 (1988).
  29. Bergeson, P. S., Singer, S. A., Kaplan, A. M. Intramuscular injections in children. Pediatrics. 70 (6), 944-948 (1982).
  30. Zhang, L., Wang, W., Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Review of Vaccines. 14 (11), 1509-1523 (2015).
  31. Ross, P. J., et al. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine. PLoS Pathogens. 9 (4), 1003264 (2013).
  32. Warfel, J. M., Zimmerman, L. I., Merkel, T. J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proceedings of the National Academy of Sciences USA. 111 (2), 787-792 (2014).
  33. Allen, A. C., et al. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunology. , (2018).
  34. Solans, L., et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunology. , (2018).
  35. Miller, M. A., et al. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One. 7 (2), 31359 (2012).
  36. Sato, Y., Izumiya, K., Sato, H., Cowell, J. L., Manclark, C. R. Aerosol infection of mice with Bordetella pertussis. Infection and Immunity. 29 (1), 261-266 (1980).
  37. Warfel, J. M., Beren, J., Merkel, T. J. Airborne transmission of Bordetella pertussis. Journal of Infectious Diseases. 206 (6), 902-906 (2012).
  38. Scanlon, K. M., Snyder, Y. G., Skerry, C., Carbonetti, N. H. Fatal Pertussis in the Neonatal Mouse Model Is Associated with Pertussis Toxin-Mediated Pathology beyond the Airways. Infection and Immunity. 85 (11), (2017).
  39. Martinez de Tejada, G., et al. Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infection and Immunity. 66 (6), 2762-2768 (1998).
  40. Higgins, S. C., Jarnicki, A. G., Lavelle, E. C., Mills, K. H. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T-cells. Journal of Immunology. 177 (11), 7980-7989 (2006).
  41. Mahon, B. P., Brady, M. T., Mills, K. H. Protection against Bordetella pertussis in mice in the absence of detectable circulating antibody: implications for long-term immunity in children. Journal of Infectious Diseases. 181 (6), 2087-2091 (2000).
  42. Karlsson, A. C., et al. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T-cells. Journal of Immunological Methods. 283 (1-2), 141-153 (2003).
  43. Hagen, J., et al. Comparative Multi-Donor Study of IFNgamma Secretion and Expression by Human PBMCs Using ELISPOT Side-by-Side with ELISA and Flow Cytometry Assays. Cells. 4 (1), 84-95 (2015).
  44. Raeven, R. H. M., et al. Molecular and cellular signatures underlying superior immunity against Bordetella pertussis upon pulmonary vaccination. Mucosal Immunology. 11 (3), 1009 (2018).
check_url/58930?article_type=t

Play Video

Cite This Article
Caution, K., Yount, K., Deora, R., Dubey, P. Evaluation of Host-Pathogen Responses and Vaccine Efficacy in Mice. J. Vis. Exp. (144), e58930, doi:10.3791/58930 (2019).

View Video