Summary

基于家庭的盖特和活动分析监视器

Published: August 08, 2019
doi:

Summary

这种创新设备使用磁惯性传感器,允许在不受控制的环境中进行步态和活动分析。目前,作为欧洲医学机构的成果措施,资格认证过程之一将作为神经肌肉疾病临床试验的临床终点。

Abstract

神经肌肉紊乱临床试验的当前结果包括运动功能量表、时位测试和由训练有素的临床评估人员执行的强度测量。这些措施稍微主观一些,在诊所或医院就诊时执行,因此构成点评估。点评估可以受日常患者状况或疲劳、动机和间流疾病等因素的影响。为了对步态和活动进行家庭监测,开发了可穿戴磁惯性传感器(WMIS)。此设备是一个运动监视器,由两个非常轻的手表传感器和一个坞站组成。每个传感器包含一个三轴加速度计、陀螺仪、磁力计和一个气压计,分别记录线性加速度、角速度、所有方向运动的磁场和大气高度。传感器可以戴在手腕、脚踝或轮椅上,用于记录受试者在白天的动作。扩展坞可在夜间上传和重新充电传感器电池。使用专有算法来计算代表所执行运动的类型和强度的参数,以分析数据。此 WMIS 可以记录一组数字生物标志物,包括累积变量(如所行走的仪表总数)和描述性步态变量,例如表示患者在预定义的时间段。

Introduction

一些潜在的疗法正在开发,用于治疗遗传性神经肌肉疾病。这些疾病包括杜琴肌肉营养不良(DMD)和脊髓肌肉萎缩(SMA)类型3。患有这些疾病的受试者最初存在近下肢无力,导致在行进困难。转化研究的最后一步是在临床试验中演示潜在治疗或方法的疗效。需要采取具体、可量化、客观和可靠的措施。这些措施的重要性最近被强调为第一阶段Ataluren试验1和三期生物马林试验2的失败。这些失败的可能原因之一是这些试验的主要结果度量的可变性和非线性演变,6分钟步行试验3(6MWT)。提高可靠性和对结果措施变化的敏感性,以及了解导致结果变化的因素,可有助于减少与主要结果措施有关的试验失败次数。

当前结果的局限性之一是评估的主观性。为了进一步提高评估的客观性,Heberer等人4表明,通过标记集和使用步态分析软件,与天真的组相比,使用类固醇治疗的患者的步长显著增加。髋关节动力学是DMD患者近端虚弱的早期标志物,对类固醇干预的变化有反应,这是这些患者唯一可用的治疗方法。然而,盖特实验室只能在大型诊所使用。此外,实验室评估是点评估,由于疲劳、动机和间流疾病等因素,患者的病情可能每天都在变化很大。

使用持续和基于家的测量应实现更客观和更具全球代表性的评估。在其他神经学领域,例如帕金森5或多发性硬化症6,一些研究已经评估了不同传感器(包括带或不带加速度计)的可行性、可靠性和与其他测量的一致性陀螺仪或磁力计,但这些设备目前都不是在临床试验期间评估患者的黄金标准。在神经肌肉疾病领域,目前尚无经过验证的患者持续家庭监测方法。近年来,通过临床医生和工程师的密切合作,巴黎泌理学研究所已经开发出多种用于上肢评估的装置,以精确评估上肢的强度和功能7,8,9.与一家专门从事导航系统的公司合作开发了可穿戴磁惯性传感器(WMIS;即ActiMyo)。最初,一种用于患有DMD和SMA10、11等神经肌肉疾病的非肌肉病患者的监测设备,现在使用同一设备来监测两种不同配置的肌瘤患者:两种疾病的传感器脚踝或手腕上的一个传感器,另一个在脚踝。非运动人群的配置由轮椅上的传感器和手腕上的传感器组成。

此 WMIS 能够精确捕获和量化放置它的肢体的所有运动。测量原理基于使用微机电系统(MEMS)惯性传感器和磁力计,通过磁惯性方程运行。专用算法允许在非受控环境中对患者的运动进行精确限定和量化。

该方法的总体目标是对患者在预定义时间内产生的任何运动进行识别和量化,并将这些措施纳入代表患者的特定于疾病的结果措施中。一段时间内的状况。

为了有效评估家中有运动障碍的移动障碍患者和非运动障碍患者,设备必须由训练有素的评估人员提供给患者,该评估人员负责确保说明已被理解。设备随设备一起提供调查员和患者手册。此 WMIS 目前用作神经肌肉和神经疾病临床试验(NCT033351270、NCT02780492、NCT01385917、NCT03039686、NCT03368742、NCT2500381)的探索性结果措施。已开发出适应病理学和/或临床试验设计的具体程序。

Protocol

对设备的任何使用必须按照参考协议制定的规则进行,该规则经道德委员会和国家监管机构的验证。设备的使用及其所连接的各种元件必须在患者手册中描述的预期用途内完成。 注:要有资格使用 WMIS,患者必须超过 5 岁,能够理解和遵守使用规则,提供知情同意,成为社会保障计划的附属或受益人,并能够遵守所有协议要求。没有特定的排除条件。 1. 为参与…

Representative Results

此处提供的数据是在伦理委员会和法国监管局批准的临床试验期间获得的。所有患者代表都签署了知情同意书。 该WMIS在2012年首次用于临床研究环境,用于对非肿瘤DMD患者上肢运动的对照和基于家庭的监测(NCT01611597),这证明了设备使用10的自主性和可行性。变量,如角速度的规范,加速度的垂直分量与整体加速度?…

Discussion

在过去十年中,已经开发了许多不同的系统,例如活动监测仪(材料表[IV]),它使用加速传感器来监测日常生活的活动,以量化能源支出13。Tanaka等人14日使用三轴加速度计(材料表[V])监测学龄前儿童的活动。Lau等人15通过双加速度计(材料表[VI])和陀螺仪(材料表[VII])的组合表明,步态时空特性可以通过惯…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢安妮-盖尔·勒莫因、阿梅利·莫洛和埃里克·多尔沃为开发这种可穿戴磁惯性传感器和杰基·怀亚特所做的评论。

Materials

ActiMyo Sensors Sysnav SF-000080 Wearable magneto-inertal sensors attached to the patient for movment recording
Helen Hayes marker set Vicon NA Whole body jumpsuit with predefined Vicon's spots
OrthoTrak (Motion Analysis, Santa Rosa, CA, USA) Motion Lab Systems Gait analysis software
ActiGraph ActiGraph Corp GTM1 Activity monitor, used by researchers to capture and record continuous, high resolution physical activity and sleep/wake information
ActivTracer GMS LTD GMS Co. Ltd Japan AC-301A Triaxial accelerometer
ADXL202E dual-accelerometer Analog Devices ADXL212AEZ High precision, low power, complete dual axis accelerometer with signal conditioned, duty cycle modulated outputs, all on a single monolithic IC.
ENC-03J gyroscope Murata Electronics ENC-03J Vibration Sensors
DynaPort MiniMod MCROBERTS Small and light case containing a tri-axial accelerometer, a rechargeable battery, an USB connection, and raw data storage on a MicroSD card
MM-2860 Sunhayato Sunhayato MM-2860 3-axis accelerometer
MicroStone MA3-10Ac MA3-04AC Microstone Co. Acceleration sensors
RT3 Activity monitor Abledata NA Triaxial accelerometer
Aparito aparito NA Wearables and disease specific mobile apps to deliver patient monitoring outside of the hospital; Elin Davies, Aparito: https://www.aparito.com/
Docking station Sysnav SF-000118
Sensor Sysnav SF-000080
Bracelet
(black/grey L)
(black/grey S) (black/yellow L) (black/yellow S)
Sysnav ZZ-000093 ZZ-000094 ZZ-000247 ZZ-000248
Patient manual Sysnav FD-000086
Ethernet cable (2 m max.) Sysnav IC-000458
Power cable
(EU)
(UK)
(US)
Sysnav ZE-000440 ZE-000441 ZE-000442
Power supply unit Sysnav ZE-000443
Ankle strap Sysnav ZZ-000462
Small bag Sysnav ZZ-000033

References

  1. McDonald, C. M., et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 390 (10101), 1489-1498 (2017).
  2. Aartsma-Rus, A., et al. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Therapeutics. 27 (5), 251-259 (2017).
  3. McDonald, C. M., et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle & Nerve. 41 (4), 500-510 (2010).
  4. Heberer, K., et al. Hip kinetics during gait are clinically meaningful outcomes in young boys with Duchenne muscular dystrophy. Gait & Posture. 48, 159-164 (2016).
  5. Pan, W., et al. Actigraphy monitoring of symptoms in patients with Parkinson’s disease. Physiology & Behavior. 119, 156-160 (2013).
  6. Supratak, A., et al. Remote Monitoring in the Home Validates Clinical Gait Measures for Multiple Sclerosis. Frontiers in Neurology. 9, 561 (2018).
  7. Seferian, A. M., et al. Upper Limb Strength and Function Changes during a One-Year Follow-Up in Non-Ambulant Patients with Duchenne Muscular Dystrophy: An Observational Multicenter Trial. PloS One. 10 (2), e0113999 (2015).
  8. Seferian, A. M., et al. Upper Limb Evaluation and One-Year Follow Up of Non-Ambulant Patients with Spinal Muscular Atrophy: An Observational Multicenter Trial. PLoS One. 10 (4), e0121799 (2015).
  9. Servais, L., et al. Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscular Disorders. 23 (2), 139-148 (2013).
  10. Le Moing, A. G., et al. A Movement Monitor Based on Magneto-Inertial Sensors for Non-Ambulant Patients with Duchenne Muscular Dystrophy: A Pilot Study in Controlled Environment. PLoS One. 11 (6), e0156696 (2016).
  11. Chabanon, A., et al. Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: Baseline data NatHis-SMA study. PLoS One. 13 (7), e0201004 (2018).
  12. Valentini, R., Martinelli, B., Mezzarobba, S., De Michiel, A., Toffano, M. Optokinetic analysis of gait cycle during walking with 1cm- and 2cm-high heel lifts. The Foot. 19 (1), 44-49 (2009).
  13. Rothney, M. P., Brychta, R. J., Meade, N. N., Chen, K. Y., Buchowski, M. S. Validation of the ActiGraph Two-Regression Model for Predicting Energy Expenditure. Medicine & Science in Sports & Exercise. 42 (9), 1785-1792 (2010).
  14. Tanaka, C., Tanaka, S. Daily Physical Activity in Japanese Preschool Children Evaluated by Triaxial Accelerometry: The Relationship between Period of Engagement in Moderate-to-Vigorous Physical Activity and Daily Step Counts. Journal of Physiological Anthropology. 28 (6), 283-288 (2009).
  15. Lau, H., Tong, K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait & Posture. 27 (2), 248-257 (2008).
  16. Zijlstra, A., Goosen, J. H. M., Verheyen, C. C. P. M., Zijlstra, W. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking. Gait & Posture. 27 (1), 164-167 (2008).
  17. Brandes, M., Zijlstra, W., Heikens, S., van Lummel, R., Rosenbaum, D. Accelerometry based assessment of gait parameters in children. Gait & Posture. 24 (4), 482-486 (2006).
  18. Liu, K., Liu, T., Shibata, K., Inoue, Y., Zheng, R. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. Journal of Biomechanics. 42 (16), 2747-2752 (2009).
  19. Itoh, T., Morioka, I. Developing Leg-Motion Measurement System Using Acceleration Sensors. Electrical Engineering in Japan. 204 (1), 59-66 (2018).
  20. Scott, E., et al. Development of a functional assessment scale for ambulatory boys with Duchenne muscular dystrophy. Physiotherapy Research International. 17 (2), 101-109 (2012).
  21. Sonenblum, S. E., Sprigle, S., Caspall, J., Lopez, R. Validation of an accelerometer-based method to measure the use of manual wheelchairs. Medical Engineering & Physics. 34 (6), 781-786 (2012).
  22. Hiremath, S. V., Ding, D. Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 7348-7351 (2011).
  23. Ciuti, G., Ricotti, L., Menciassi, A., Dario, P. M. E. M. S. Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors. 15 (3), 6441-6468 (2015).
  24. del Rosario, M., Redmond, S., Lovell, N. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement. Sensors. 15 (8), 18901-18933 (2015).
  25. Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P. Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors. 14 (6), 10146-10176 (2014).
  26. Miao, F., Cheng, Y., He, Y., He, Q., Li, Y. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone. Sensors. 15 (5), 11465-11484 (2015).
  27. EMA. . Draft qualification opinion on stride velocity 95th centile as a secondary endpoint in Duchenne Muscular Dystrophy measured by a valid and suitable wearable device*. , (2018).
  28. Coulter, E. H., et al. Validity of the activPAL3 activity monitor in people moderately affected by Multiple Sclerosis. Medical Engineering & Physics. 45, 78-82 (2017).
  29. Thorp, J. E., Adamczyk, P. G., Ploeg, H. L., Pickett, K. A. Monitoring Motor Symptoms during Activities of Daily Living in Individuals with Parkinson’s Disease. Frontiers Neurology. 9, 1036 (2018).
check_url/59668?article_type=t

Play Video

Cite This Article
Lilien, C., Gasnier, E., Gidaro, T., Seferian, A., Grelet, M., Vissière, D., Servais, L. Home-Based Monitor for Gait and Activity Analysis. J. Vis. Exp. (150), e59668, doi:10.3791/59668 (2019).

View Video