Summary

人类胰腺胰岛的单细胞RNA测序与分析

Published: July 18, 2019
doi:

Summary

在这里,我们提出了一个协议,利用基于液滴的微流体单细胞RNA测序技术,从分离的人类胰腺胰岛生成单个细胞的高质量、大规模转录组数据。

Abstract

胰腺胰岛由具有独特激素表达模式的内分泌细胞组成。内分泌细胞在适应正常和病理状况时表现出功能差异。该协议的目标是利用基于液滴的微流体单细胞RNA测序技术,生成每种内分泌细胞类型的高质量、大规模转录组数据。这些数据可用于在正常或特定条件下建立每种内分泌细胞类型的基因表达特征。该过程需要仔细操作、精确测量和严格的质量控制。在此协议中,我们描述了人类胰腺胰岛分离、测序和数据分析的详细步骤。约20,000个人类单小岛细胞的代表性结果表明,该协议的成功应用。

Introduction

胰腺胰岛释放内分泌激素来调节血糖水平。五种内分泌细胞类型在功能上和形态上各不相同,它们参与于这一基本作用:β细胞产生胰高血糖素、β细胞胰岛素、β细胞生长激素、PP细胞胰腺多肽和β-细胞ghrelin1。基因表达分析是在正常或特定条件下对内分泌细胞进行表征的有用方法。从历史上看,整个小岛基因表达分析是使用微阵列和下一代RNA测序2,3,4,5,6,7生成,8.虽然整个小岛转录组有助于识别器官特异性转录本和疾病候选基因,但它未能揭示每个小岛细胞类型的分子异质性。激光捕获微分型(LCM)技术已应用于直接从胰岛9、10、11、12获得特定细胞类型,但低于目标细胞的纯度人口。为了克服这些限制,荧光活性细胞分类(FACS)被用来选择特定的内分泌细胞群,如β-和β细胞13,14,15,16,17,18.此外,Dorrell等人使用基于抗体的FACS分类方法将β细胞分为四个亚群19。FACS排序的小岛细胞也可以镀出用于单个细胞的RNA测序;然而,基于板的方法在可伸缩性20,21,22方面面临着挑战。

为了生成各内分泌细胞类型的高质量、大规模转录组数据,我们应用微流体技术应用于人类小岛细胞。微流体平台以高通量、高质量和可扩展的方式23、24、25、26、27从大量单个细胞生成转录组数据。除了揭示大量捕获的细胞类型的分子特性外,高度可扩展的微流体平台还能在提供足够的细胞时识别稀有细胞类型。因此,该平台应用于人类胰腺胰岛允许分析ghrelin分泌β细胞,这是一种罕见的内分泌细胞类型,由于其稀缺性28,其功能鲜为人知。近年来,我们和其他一些人发表了几项研究,报告使用该技术29、30、31、32,人类胰岛的大规模转录数据。 33.这些数据是公开的,有用的资源为小岛社区研究内分泌细胞异质性及其在疾病的影响。

在这里,我们描述了一种基于液滴的微流体单细胞RNA测序协议,它被用于生成大约20,000个人类小岛细胞的转录组数据,包括β-、β-、β–、PP、β细胞,以及较小比例的非内分泌细胞32.工作流从孤立的人类胰岛开始,并描述了胰岛细胞分离、单细胞捕获和数据分析的步骤。该协议要求使用新鲜分离的小岛,并可应用于人类和其他物种(如啮齿动物)的小岛。使用此工作流,可以在基线和其他条件下构建无偏和全面的小岛细胞图集。

Protocol

1. 人类小岛分离 从15-80岁之间的男女尸体器官捐献者中分离出人类胰岛,没有预先存在的疾病,除非研究目的需要具有特定人口特征的捐赠者胰岛。 隔离后,将分离的小岛保存在组织培养设施中2-3天。通常需要超过 1 天的时间才能看到小岛损伤。 将小岛放入瓶子中,将其完全浸入胰岛介质中。通宵发货后,就把它运到实验室。 从胰岛供应商处获取已发货的小岛的胰岛等效?…

Representative Results

单细胞RNA测序工作流程包括三个步骤:将完整的人类胰岛分离成单个细胞悬浮液,使用基于液滴的技术捕获单个细胞,以及分析RNA-seq数据(图1)。首先,获得人类胰岛在一夜之间孵育。完整的胰岛在显微镜下被检查(图2A)。分离的斜岛细胞的完整性已经使用RNA荧光原位杂交(RNA-FISH)得到验证。如图2B所示,分别使?…

Discussion

近年来开发的单细胞技术为描述细胞类型和研究人类胰腺胰岛分子异质性提供了新的平台。我们采用了基于液滴的微流体单细胞分离和数据分析方案来研究人类胰岛。我们的协议成功地从超过20,000个单人类小岛细胞中生成了RNA测序数据,在序列质量和批次效应方面变化相对较小。

特别是,在该协议中,两个步骤对于高质量结果至关重要。分离人类胰岛时,需要谨慎。重要的是不要?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

没有

Materials

30 µm Pre-Separation Filters Miltenyi Biotec 130-041-407 Cell strainer
8-chamber slides Chemometec 102673-680 Dell counting assay slides
Bioanalyzer High Sensitivity DNA Kit Agilent 5067-4626 for QC
Bovine Serum Albumin Sigma-Aldrich A9647 Single cell media
Chromium Single Cell 3' Library & Gel Bead Kit v2, 16 rxns 10X Genomics 120237 Single cell reagents
Chromium Single Cell A Chip Kit v2, 48 rx (6 chips) 10X Genomics 120236 Microfluidic chips
CMRL-1066 ThermoFisher 11530-037 Complete islet media
EB Buffer Qiagen 19086 Elution buffer
Eppendorf twin-tec PCR plate, 96-well, blue, semi-skirted VWR 47744-112 Emulsion plate
Fetal Bovine Serum ThermoFisher 16000-036 Complete islet media
Human islets Prodo Labs HIR Isolated human islets
L-Glutamine (200 mM) ThermoFisher 25030-081 Complete islet media
Nextera DNA Library Preparation Kit (96 samples) Illumina FC-121-1031 Library preparation reagents
NextSeq 500/550 High Output Kit v2.5 (75 cycles) Illumina FC-404-2005 Sequencing
Penicillin-Streptomycin (10,000 U/mL) ThermoFisher 15140-122 Complete islet media
Qubit High Sensitivity dsDNA Kit Life Technologies Q32854 for QC
Solution 18 Chemometec 103011-420 Cell counting assay reagent
SPRISelect Reagent Fisher Scientific B23318 Purification beads
Tissue Culture Dishes (10 cm) VWR 10861-594 for islet culture
TrypLE Express Life Technologies 12604-013 Cell dissociation solution
Zymo DNA Clean & Concentrator-5, 50 reactions VWR 77001-152 Library clean up columns

References

  1. Gutierrez, G. D., Gromada, J., Sussel, L. Heterogeneity of the Pancreatic Beta Cell. Frontiers in Genetics. 8 (22), (2017).
  2. Eizirik, D. L., et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genetics. 8 (3), e1002552 (2012).
  3. Fadista, J., et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences. 111 (38), 13924-13929 (2014).
  4. Gunton, J. E., et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 122 (3), 337-349 (2005).
  5. Kutlu, B., et al. Detailed transcriptome atlas of the pancreatic beta cell. BMC Medical Genomics. 2 (3), (2009).
  6. Maffei, A., et al. Identification of tissue-restricted transcripts in human islets. Endocrinology. 145 (10), 4513-4521 (2004).
  7. Moran, I., et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metabolism. 16 (4), 435-448 (2012).
  8. van de Bunt, M., et al. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics. 11 (12), e1005694 (2015).
  9. Ebrahimi, A., et al. Evidence of stress in beta cells obtained with laser capture microdissection from pancreases of brain dead donors. Islets. 9 (2), 19-29 (2017).
  10. Marselli, L., Sgroi, D. C., Bonner-Weir, S., Weir, G. C. Laser capture microdissection of human pancreatic beta-cells and RNA preparation for gene expression profiling. Methods in Molecular Biology. 560, 87-98 (2009).
  11. Marselli, L., et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One. 5 (7), e11499 (2010).
  12. Sturm, D., et al. Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. Journal of Visualized Experiments. (71), (2013).
  13. Ackermann, A. M., Wang, Z., Schug, J., Naji, A., Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Molecular Metabolism. 5 (3), 233-244 (2016).
  14. Benner, C., et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 15 (620), (2014).
  15. Blodgett, D. M., et al. Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. Diabetes. 64 (9), 3172-3181 (2015).
  16. Bramswig, N. C., et al. Epigenomic plasticity enables human pancreatic alpha to beta cell reprogramming. The Journal of Clinical Investigation. 123 (3), 1275-1284 (2013).
  17. Dorrell, C., et al. Transcriptomes of the major human pancreatic cell types. Diabetologia. 54 (11), 2832-2844 (2011).
  18. Nica, A. C., et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Research. 23 (9), 1554-1562 (2013).
  19. Dorrell, C., et al. Human islets contain four distinct subtypes of beta cells. Nature Communications. 7, 11756 (2016).
  20. Li, J., et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Reports. 17 (2), 178-187 (2016).
  21. Muraro, M. J., et al. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Systems. 3 (4), 385-394 (2016).
  22. Segerstolpe, A., et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metabolism. 24 (4), 593-607 (2016).
  23. Bose, S., et al. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biology. 16 (120), (2015).
  24. Fan, H. C., Fu, G. K., Fodor, S. P. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 347 (6222), 1258367 (2015).
  25. Klein, A. M., et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 161 (5), 1187-1201 (2015).
  26. Macosko, E. Z., et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 161 (5), 1202-1214 (2015).
  27. Zheng, G. X., et al. Massively parallel digital transcriptional profiling of single cells. Nature Communications. 8 (14049), (2017).
  28. Dominguez Gutierrez, G., et al. Signature of the Human Pancreatic epsilon Cell. Endocrinology. 159 (12), 4023-4032 (2018).
  29. Baron, M., et al. A Single-Cell Transcriptomic Map of the Human and Mouse. Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems. 3 (4), 346-360 (2016).
  30. Lawlor, N., et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Research. 27 (2), 208-222 (2017).
  31. Wang, Y. J., et al. Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes. 65 (10), 3028-3038 (2016).
  32. Xin, Y., et al. Pseudotime Ordering of Single Human beta-Cells Reveals States of Insulin Production and Unfolded Protein Response. Diabetes. 67 (9), 1783-1794 (2018).
  33. Xin, Y., et al. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell Metabolism. 24 (4), 608-615 (2016).
  34. Chemometec. . Nucleocounter NC-250: Cell count and viability assay. , (2015).
  35. 10X Genomics. . 10X Genomics: Chromium Single Cell 3’ Reagents Kits v2: User Guide. , (2017).
  36. Agilent Technologies. . Agilent Bioanalyzer: High Sensitivity DNA Kit Guide. , (2013).
  37. Thermo Fischer Scientific. . Qubit: dsDNA High Sensitivity Assay Kit. , (2015).
  38. Illumina. . Illumina Nextera DNA Library Prep Reference Guide. , (2016).
  39. Illumina. . llumina NextSeq 500 System Guide. , (2018).
  40. Scrucca, L., Fop, M., Murphy, T. B., Raftery, A. E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 8 (1), 289-317 (2016).
  41. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 36 (5), 411-420 (2018).
  42. Stuart, T., et al. Comprehensive integration of single cell data. Preprint at bioRixv. , (2018).
  43. DePasquale, E. A. K., et al. DoubletDecon: Cell-State Aware Removal of Single-Cell RNA-Seq Doublets. bioRxiv. , (2018).
  44. McGinnis, C. S., Murrow, L. M., Gartner, Z. J. DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. bioRxiv. , (2018).
  45. Wolock, S. L., Lopez, R., Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. bioRxiv. , (2018).
  46. Dominguez Gutierrez, G., et al. Gene Signature of Proliferating Human Pancreatic alpha Cells. Endocrinology. 159 (9), 3177-3186 (2018).
  47. Habib, N., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature Methods. 14 (10), 955-958 (2017).
  48. Habib, N., et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 353 (6302), 925-928 (2016).
  49. Stoeckius, M., et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biology. 19 (1), 224 (2018).
check_url/59866?article_type=t

Play Video

Cite This Article
Xin, Y., Adler, C., Kim, J., Ding, Y., Ni, M., Wei, Y., Macdonald, L., Okamoto, H. Single-cell RNA Sequencing and Analysis of Human Pancreatic Islets. J. Vis. Exp. (149), e59866, doi:10.3791/59866 (2019).

View Video