Summary

在人类多能干细胞中使用CRISPR-CAS9生成定义的基因组修饰

Published: September 25, 2019
doi:

Summary

该协议提供了一种方法,促进在人类多能干细胞中使用CRISPR-CAS9生成定义的异质核苷酸或同源核苷酸变化。

Abstract

人类多能干细胞为研究基因功能和模拟与疾病相关的特定突变提供了强大的系统。由于CRISPR-CAS9介导在第二个等位基因的形成,精确异构基因修饰的生成具有挑战性。在这里,我们演示了一个协议,以帮助克服这一困难,通过使用两个修复模板,其中只有一个表示所需的序列变化,而两个模板包含无声突变,以防止重新切割和indel形成。该方法对DNA的基因编辑编码区域产生异源对照和突变人类干细胞系,研究人类疾病和生物学最为有利。此外,还优化了转染和筛选方法,以减少基因编辑实验的人工和成本。总体而言,该方案广泛适用于利用人类多能干细胞模型进行的许多基因组编辑项目。

Introduction

人类胚胎干细胞 (hESCs) 和诱导多能干细胞 (iPSC) 是模拟人类疾病的宝贵工具,因为它们具有更新能力,同时保持生成不同谱系细胞类型的能力1,2 34.这些模型开启了询问基因功能的可能性,并了解特定突变和表型如何与各种疾病5、6相关。然而,为了理解特定改变如何与特定的表型相关联,使用成对同源对照和突变细胞系对于控制线变异性7、8非常重要。转录活化剂样效应素核酸酶(TALEN)和锌指核酸酶已用于在各种基因模型(包括原发细胞)中生成插入或删除(indels)突变;但这些核酸酶可能使用繁琐,而且价格昂贵9,10,11,12,13,14。集群定期间隔短节重复(CRISPR)-CAS9核酸酶的发现,由于在基因组的几乎任何区域的印德尔形成效率、使用简单性以及成本降低15,使该领域发生了革命性的变化。,16,17,18,19.

使用CRISPR-CAS9基于基因组编辑技术的挑战是生成或校正一个等位基因的特定突变,而不在第二个等位基因20中产生indel突变。该协议的主要目标是通过使用两个单链寡核苷酸 (ssODN) 修复模板来克服这一挑战,以减少第二个等位基因的形成。两种ssODN都设计包含无声突变,以防止CAS9核酸酶的重新切割,但只有一个包含利息的改变。该方法提高了产生特定杂性基因修饰的效率,而不会在第二个等位基因中诱导indel形成。利用该协议,在六个独立基因组位置进行基因编辑实验,证明在一个等位基因中精确引入所需的基因组变化,而第二个等位基因形成无indel形成,总效率为±10%。所述议定书改编自马奎尔等人21日。

Protocol

1. 导引RNA(gRNA)的设计和结构

注:每个gRNA由两个60基对(bp)寡核苷酸组成,这些基质退火产生100 bp双绞合(ds)寡核苷酸(图1A-C)。gRNA 设计、生成和测试切割效率的时间表约为 2 周(图 2)。

  1. 选择要编辑基因组的DNA区域,并确定符合格式的3-4 23 bp序列,5′-G(N 19)NGG-3’。这些序列应位于感兴趣区域?…

Representative Results

生成 gRNA 和针对印子的筛查

每个gRNA将被克隆成质粒载体,并使用U6启动子表达。AflII限制酶用于使质粒(添加基因#41824)线性化,位于 U6 启动子之后。两个 60 bp 寡核糖退火后产生的 100 bp 波段使用 DNA 程序集克隆到 gRNA 表达载体中。一旦gRNA质粒生成,它们与CRISPS-CAS9 GFP质粒(添加基因#44719)一起转染成hESC或iPSC。GFP® 细胞在2天后进行分拣,以丰富转染细胞…

Discussion

在此协议中,CRISPR-CAS9 与两个ssODN修复模板一起,在人类多能干细胞中证明具有特定的异构基因组变化或同源基因组变化。该方法成功地生成了异源细胞系,以接近10%的效率表达异质基因组变化。该协议已针对人类ESC和iPSCs在辐照MEF上生长,支持细胞生长和存活后培养细胞在低密度细胞排序后。通过维持具有10纳克/mL bFGF和Y-27632二盐的细胞,可以最大限度地减少细胞死亡。该协议可能适用于馈送自?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了国家心脏、肺和血液研究所(NHLBI)、国家卫生研究院的资助,资助了U01HL099656(P.G.和D.L.F.)和U01HL134696(P.G.和D.L.F.)。

Materials

5-ml polystyrene round-bottom tube with cell-strainer cap Corning 352235
6-well polystyrene tissue culture dishes Corning 353046
AflII restriction endonuclease New England Biolabs R0520
Agarose VWR N605
DMEM/F12 medium ThermoFisher 11320033
dNTPs Roche 11969064001
Fluorescence-activated cell sorter (FACS) apparatus
Gel extraction kit Macherey-Nagel 740609
Gibson Assembly Kit New England Biolabs E2611
gRNA_Cloning Vector Addgene 41824
LB agar plates containing 50 μg/ml kanamycin
Lipofectamine Stem Reagent ThermoFisher (STEM00001)
Matrigel Growth Factor Reduced (GFR) Corning 354230
Murine embryonic fibroblasts (MEFs)
Nucleospin Gel Extraction and PCR Clean-up Kit Macherey-Nagel 740609
Orbital shaking incubator
pCas9_GFP vector Addgene 44719
PCR strip tubes USA Scientific 1402-2900
Phusion High Fidelity DNA Polymerase and 5× Phusion buffer New England Biolabs M0530
PurelinkTM Quick Plasmid Miniprep Kit Invitrogen K210011
Proteinase K Qiagen Qiagen 19133
StellarTM electrocompetent Escherichia coli cells Takara 636763
SOC medium New England Biolabs B9020S
TrypLE Express Enzyme ThermoFisher 12605036
Y-27632 dihydrochloride/ROCK inhibitor (ROCKi) Tocris 1254

References

  1. Srivastava, D., Dewitt, N. Review In Vivo Cellular Reprogramming: The Next Generation. Cell. 166 (6), 1386-1396 (2016).
  2. Clevers, H. Review Modeling Development and Disease with Organoids. Cell. 165 (7), 1586-1597 (2016).
  3. Murry, C. E., Keller, G. Differentiation of Embryonic Stem Cells to Relevant Populations: Lessons from Embryonic Development. Cell. 132 (4), 661-680 (2008).
  4. Liu, C., Oikonomopoulos, A., Sayed, N., Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145 (5), 1-6 (2018).
  5. Avior, Y., Sagi, I., Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology. 17 (3), 170-182 (2016).
  6. Tiyaboonchai, A., et al. GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells. Stem Cell Reports. 8 (3), 589-604 (2017).
  7. Guo, M., et al. Using hESCs to Probe the Interaction of the Diabetes-Associated Genes CDKAL1 and MT1E. Cell Reports. 19 (8), 1512-1521 (2017).
  8. Zeng, H., et al. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell. 19 (3), 326-340 (2016).
  9. Wang, Y., et al. Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circulation Research. 111, 1494-1503 (2012).
  10. Xue, H., Wu, J., Li, S., Rao, M. S., Liu, Y. Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System. Methods in Molecular Biology. 1307, 173-190 (2014).
  11. Huang, X., et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 33 (5), 1470-1479 (2015).
  12. Wang, X., et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nature Biotechnology. 33 (2), 175-178 (2015).
  13. Sim, X., Cardenas-Diaz, F. L., French, D. L., Gadue, P. A Doxycycline-Inducible System for Genetic Correction of iPSC Disease Models. Methods in Molecular Biology. 1353, 13-23 (2015).
  14. Hockemeyer, D., Jaenisch, R. Review Induced Pluripotent Stem Cells Meet Genome Editing. Stem Cell. 18 (5), 573-586 (2016).
  15. Byrne, S. M., Mali, P., Church, G. M. Genome editing in human stem cells. Methods in Enzymology. 546, 119-138 (2014).
  16. Zhu, Z., González, F., Huangfu, D. The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods in Enzymology. 546, 215-250 (2014).
  17. Hou, Z., et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of the National Academy of Sciences of the United States of America. 110 (39), 15644-15649 (2013).
  18. Cong, L., Zhang, F. Genome engineering using CRISPR-Cas9 system. Methods in Molecular Biology. 1239, 197-217 (2015).
  19. Mali, P., Esvelt, K. M., Church, G. M. Cas9 as a versatile tool for engineering biology. Nature Methods. 10 (10), 957-963 (2013).
  20. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., Corn, J. E. Enhancing homology directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology. 34 (3), 339-344 (2016).
  21. Maguire, J. A., Cardenas-Diaz, F. L., Gadue, P., French, D. L. Highly efficient crispr cas9-mediated genome editing in human pluripotent stem cells. Current Protocols in Stem Cell Biology. 48 (1), 64 (2019).
check_url/60085?article_type=t

Play Video

Cite This Article
Cardenas-Diaz, F. L., Maguire, J. A., Gadue, P., French, D. L. Generation of Defined Genomic Modifications Using CRISPR-CAS9 in Human Pluripotent Stem Cells. J. Vis. Exp. (151), e60085, doi:10.3791/60085 (2019).

View Video