Summary

单细胞微吸气作为荧光激活细胞分类的替代策略,用于巨型病毒混合物分离

Published: October 27, 2019
doi:

Summary

在这里,我们描述了一个单细胞微吸入方法分离受感染的阿米巴。为了分离受福斯托病毒和未知巨病毒感染的Vermamoeba病毒的病毒亚群,我们开发了下面详述的规程,并展示了其分离两种低丰度的新型巨病毒的能力。

Abstract

在阿米巴共同培养过程中,多个病毒可能在一个井中分离。我们之前通过应用于病毒群的端点稀释和/或荧光活化细胞分拣 (FACS) 解决了这个问题。然而,当混合物中的病毒具有相似的形态特性,并且其中一种病毒繁殖缓慢时,在基因组组装阶段发现两种病毒的存在,并且病毒无法分离以进一步表征。为了解决这个问题,我们开发了一个单细胞微吸气程序,允许分离和克隆高度相似的病毒。在目前的工作中,我们介绍这种替代策略如何允许我们分离克兰迪索病毒ST1和Usurpati病毒LCD7的小病毒亚群,与溶酶和快速生长相比,这些巨型病毒生长缓慢,不会导致阿米巴溶血症浮病毒通过特定基因扩增来评估纯度控制,并产生病毒以进一步表征。

Introduction

核细胞质大DNA病毒(NCLDV)是极其多样化的,由四个家族,感染真核生物1定义。第一个描述的病毒基因组超过300kbp是植物dnavire,包括紫杉醇小球状病毒1 PBCV12。咪咪病毒的分离和首次描述表明,病毒的大小在颗粒大小(450nm)和基因组长度(1.2Mb)3方面都增加了一倍。自那时以来,许多巨大的病毒被描述,通常使用阿米巴共培养程序分离。几个具有不同形态和遗传内容的巨型病毒可以从阿坎塔莫巴病毒细胞中分离出来,包括马赛病毒、潘多拉病毒、皮托病毒、莫利病毒、塞德拉病毒、帕克曼病毒、图潘病毒,以及最近美杜莎病毒4,5,67,8,9,10,111213,14,15,16,17。同时,对Vermamoeba病毒的分离使得对巨病毒福斯托病毒、考莫埃巴病毒和奥菲奥病毒18、19、20的分离和描述得以进行。其他巨型病毒被分离为他们的宿主原虫,如卡福龙根西21,奥雷球菌阿诺费伦斯22,克雷索穆利纳23博多盐 24.所有这些隔离都是由于越来越多的团队致力于隔离,并引入了高吞吐量策略更新 25、26、27、28,例如利用流式细胞测定,改进共培养系统。

2016年,我们采用一种将共培养和流细胞学相结合的策略来分离巨型病毒27。制定这一策略是为了增加接种的样本数量,使用作细胞支持的培养者多样化,并快速检测细胞支持的莱沙。该系统通过添加补充步骤来更新,以避免初步的分子生物学鉴定和快速检测未知的病毒群,如Pacman病毒29。耦合流细胞测定细胞分类允许分离咪咪病毒和塞德拉病毒A1130的混合物。然而,我们后来遇到了通过流式细胞测定分离和检测这些病毒亚群的局限性。测序后,当我们组装Fausto病毒ST125和Fausto病毒LCD7(未公布的数据)的基因组时,我们惊奇地发现,每个集合中有两个补充基因组,两个新病毒的基因组在公共基因组数据库中未识别。然而,无论是流动细胞学还是传输电子显微镜(TEM)都显示阿米巴感染了两种不同的病毒,即克兰迪索病毒ST1和佩兰皮塔蒂病毒LCD7。我们设计了特定的PCR系统,分别根据其基因组扩增浮法托病毒、汉迪斯坦病毒和克兰迪索病毒标记;我们的目的是建立基于PCR的系统,能够验证被分离的病毒的纯度。然而,端点稀释和流式细胞测量未能将它们分开。分离这一单一病毒种群是困难的,因为无论是克兰斯蒂诺病毒和汉里帕蒂病毒种群的形态或复制元素都没有特征。由于两个种群的重叠(在有效分离后测试),我们只通过流式细胞测定检测出一个病毒群。我们试图用96孔板的单粒子分拣来分离它们,但我们没有观察到任何细胞病的影响,我们也没有通过PCR扩增来检测克兰斯蒂诺病毒和汉皮拉蒂病毒。最后,只有端点稀释和单阿米巴微吸气的组合,才使得这两种低丰度的巨型病毒从浮力病毒中分离出来。这种分离方法是本文的对象。

Protocol

1. 阿米巴文化 使用Vermamoeba 纤维化(应变 CDC19)作为细胞支持。 在75cm2细胞培养瓶中,在浓度为1 x 106细胞/mL的阿米巴中加入30 mL蛋白酶-肽-酵母提取物-葡萄糖培养基(PYG)和3mL的阿米巴。 将培养保持在28°C。 48小时后,使用计数幻灯片对阿米巴进行量化。 要冲洗,以1 x106细胞/mL的浓度收获细胞,在720 x g下离?…

Representative Results

单细胞微吸气是本手稿中优化的微操作过程(图1)。这种技术能够捕获一个圆的,受感染的阿米巴(图2A),并在含有未感染阿米巴(图2)的新型板中释放它。它是一个适用于共培养系统的功能原型,并成功地分离了非溶性巨病毒。这种方法首次在巨病毒领域被应用,并使得分离出两种新的低丰度巨病毒成为可能。?…

Discussion

单细胞微吸气处理的持续时间及其良好功能取决于操作员。实验的不同步骤要求精度。工作站的微操作组件的使用必须通过观察微吸气过程和细胞释放来持续控制。通过微观观察进行随访对于捕获和转移细胞是必要的。有经验的操作员可能需要 1 到 2 小时来分离 10 个细胞,并根据要分离的病毒的丰度逐一重新传输它们。操作的数量可能有所不同。我们建议从 10 个操作开始。根据定义,我们不知?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢让-皮埃尔·包多因和奥利维尔·姆巴雷克的建议,并感谢克莱尔·安德烈尼在英语更正和修改方面的帮助。这项工作得到了法国国家研究局根据”投资未来”方案管理,参考ANR-10-IAHU-03(墨西哥感染)和普罗旺斯阿尔卑斯共和国提供的赠款支持。阿祖尔和欧洲基金FEDER PRIMI。

Materials

Agarose Standard Euromedex Unkown Standard PCR
AmpliTaq Gold 360 Master Mix Applied Biosystems 4398876 Standard PCR
CellTram 4r Oil Eppendorf 5196000030 Control the cells during the microaspiration process
Corning cell culture flasks 150 cm2 Sigma-aldrich CLS430825 Culture
Corning cell culture flasks 25 cm2 Sigma-aldrich CLS430639 Culture
Corning cell culture flasks 75 cm2 Sigma-aldrich CLS430641 Culture
DFC 425C camera LEICA Unkown Observation/Monitoring
Eclipse TE2000-S Inverted Microscope Nikon Unkown Observation/Monitoring
EZ1 advanced XL Quiagen 9001874 DNA extraction
Glasstic Slide 10 With Counting Grids Kova International 87144E Cell count
Mastercycler nexus Eppendorf 6331000017 Standard PCR
Microcapillary 20 µm Eppendorf 5175 107.004 Microaspiration and release of cells
Micromanipulator InjectMan NI2 Eppendorf 631-0210 Microcapillary positioning
Nuclease-Free Water ThermoFischer AM9920 Standard PCR
Optima XPN Ultracentrifuge BECKMAN COULTER A94469 Virus purification
Petri dish 35 mm Ibidi 81158 Culture/observation
Sterile syringe filters 5 µm Sigma-aldrich SLSV025LS Filtration
SYBR green Type I Invitrogen unknown Fluorescent molecular probes/ flow cytometry
SYBR Safe Invitrogen S33102 Standard PCR; DNA gel stain
Tecnai G20 FEI Unkown Electron microscopy
Type 70 Ti Fixed-Angle Titanium Rotor BECKMAN COULTER 337922 Virus purification
Ultra-Clear Tube, 25 x 89 mm BECKMAN COULTER 344058 Virus purification

References

  1. Iyer, L. M., Aravind, L., Koonin, E. V. Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses. Journal of Virology. 75 (23), 11720-11734 (2001).
  2. Li, Y., et al. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology. 237 (2), 360-377 (1997).
  3. Scola, B. L. A Giant Virus in Amoebae. Science. 299 (5615), 2033 (2003).
  4. Philippe, N., et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 341 (6143), 281-286 (2013).
  5. Antwerpen, M. H., et al. Whole-genome sequencing of a pandoravirus isolated from keratitis-inducing acanthamoeba. Genome Announcements. 3 (2), 00136-00215 (2015).
  6. Legendre, M., et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proceedings of the National Academy of Sciences of the United States of America. 111 (11), 4274-4279 (2014).
  7. Legendre, M., et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proceedings of the National Academy of Sciences of the United States of America. 112 (38), 5327-5335 (2015).
  8. Legendre, M., et al. Diversity and evolution of the emerging Pandoraviridae family. Nature Communications. 9 (1), 2285 (2018).
  9. Aherfi, S., et al. A Large Open Pangenome and a Small Core Genome for Giant Pandoraviruses. Frontiers in Microbiology. 9, 166 (2018).
  10. Andreani, J., et al. Cedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses. Viruses. 8 (11), 300 (2016).
  11. Rodrigues, R. A. L., et al. Morphologic and genomic analyses of new isolates reveal a second lineage of cedratviruses. Journal of Virology. , 00372 (2018).
  12. Bertelli, C., et al. Cedratvirus lausannensis- digging into Pithoviridaediversity. Environmental Microbiology. , (2017).
  13. Levasseur, A., et al. Comparison of a modern and fossil Pithovirus reveals its genetic conservation and evolution. Genome Biology and Evolution. , (2016).
  14. Dornas, F. P., et al. A Brazilian Marseillevirus Is the Founding Member of a Lineage in Family Marseilleviridae. Viruses. 8 (3), 76 (2016).
  15. Yoshikawa, G., Blanc-Mathieu, R., et al. Medusavirus, a novel large DNA virus discovered from hot spring water. Journal of Virology. , (2019).
  16. Legendre, M., et al. Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes. Frontiers in Microbiology. 10, 430 (2019).
  17. Abrahão, J., et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nature Communications. 9 (1), 749 (2018).
  18. Reteno, D. G., et al. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. Journal of Virology. 89 (13), 6585-6594 (2015).
  19. Bajrai, L., et al. Kaumoebavirus, a New Virus That Clusters with Faustoviruses and Asfarviridae. Viruses. 8 (12), 278 (2016).
  20. Andreani, J., et al. Orpheovirus IHUMI-LCC2: A New Virus among the Giant Viruses. Frontiers in Microbiology. 8, 779 (2018).
  21. Fischer, M. G., Allen, M. J., Wilson, W. H., Suttle, C. A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proceedings of the National Academy of Sciences of the United States of America. 107 (45), 19508-19513 (2010).
  22. Moniruzzaman, M., et al. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology. 466-467, 60-70 (2014).
  23. Gallot-Lavallée, L., Blanc, G., Claverie, J. -. M. Comparative genomics of Chrysochromulina Ericina Virus (CeV) and other microalgae-infecting large DNA viruses highlight their intricate evolutionary relationship with the established Mimiviridae family. Journal of Virology. , (2017).
  24. Deeg, C. M., Chow, C. -. E. T., Suttle, C. A. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. eLife. 7, 235 (2018).
  25. Boughalmi, M., et al. High-throughput isolation of giant viruses of the Mimiviridae and Marseilleviridae families in the Tunisian environment. Environmental Microbiology. 15 (7), 2000-2007 (2013).
  26. Khalil, J. Y. B., et al. High-Throughput Isolation of Giant Viruses in Liquid Medium Using Automated Flow Cytometry and Fluorescence Staining. Frontiers in Microbiology. 7 (120), 26 (2016).
  27. Bou Khalil, J. Y., Andreani, J., Raoult, D., La Scola, B. A Rapid Strategy for the Isolation of New Faustoviruses from Environmental Samples Using Vermamoeba vermiformis. Journal of Visualized Experiments : JoVE. (112), e54104 (2016).
  28. Khalil, J. Y. B., Andreani, J., La Scola, B. Updating strategies for isolating and discovering giant viruses. Current Opinion in Microbiology. 31, 80-87 (2016).
  29. Andreani, J., et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. Journal of Virology. , (2017).
  30. Khalil, J. Y. B., et al. Flow Cytometry Sorting to Separate Viable Giant Viruses from Amoeba Co-culture Supernatants. Frontiers in Cellular and Infection Microbiology. 6, 17722 (2017).
  31. Fröhlich, J., König, H. New techniques for isolation of single prokaryotic cells. FEMS Microbiology Reviews. 24 (5), 567-572 (2000).
  32. Ye, J., et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13 (1), 134 (2012).
  33. Kimura, Y., Yanagimachi, R. Intracytoplasmic sperm injection in the mouse. Biology of Reproduction. 52 (4), 709-720 (1995).
check_url/60148?article_type=t

Play Video

Cite This Article
Sahmi-Bounsiar, D., Boratto, P. V. d. M., Oliveira, G. P., Bou Khalil, J. Y., La Scola, B., Andreani, J. Single Cell Micro-aspiration as an Alternative Strategy to Fluorescence-activated Cell Sorting for Giant Virus Mixture Separation. J. Vis. Exp. (152), e60148, doi:10.3791/60148 (2019).

View Video