Summary

通过斯特兰德特异性RT-PCR检测患者人类免疫缺陷病毒类型1(HIV-1)反义蛋白(ASP)RNA转录本

Published: November 27, 2019
doi:

Summary

在没有序列特异性引录的情况下,RNA发夹和环可作为逆转录(RT)的引种,干扰重叠反义转录本的研究。我们已经开发出一种能够识别股特异性RNA的技术,并用它来研究HIV-1反义蛋白ASP。

Abstract

在逆转录病毒中,在人体免疫缺陷病毒1型(HIV-1)和人类T-淋巴病毒1(HTLV-1)中都描述了反义转录。在HIV-1中,反义蛋白ASP基因位于env的负链上,在读帧-2中,跨越连接gp120/gp41。在感向上,ASP 开放读取帧的 3′ 端与 gp120 超可变区域 V4 和 V5 重叠。ASP RNA的研究因一种称为RT自吸的现象而受阻,即RNA二级结构能够在没有特异性引物的情况下对RT进行质感,从而产生非特异性cDNA。在RT反应中结合高RNA变性与生物素化逆转引物,结合将cDNA亲和纯化到链球菌素涂层磁珠上,使我们能够选择性地扩增从HIV-1感染者中提取的CD4+T细胞中的ASP RNA。我们的方法成本相对较低,操作简单,可靠性高,易于重现。在这方面,它不仅在HIV-1中,而且在其他生物系统中,是研究反义转录的有力工具。

Introduction

反义蛋白(ASP)基因是一个开放阅读框架(ORF),位于人类免疫缺陷病毒1型(HIV-1)包络(env)基因的负链上,跨越结gp120/gp411。过去30年来,有多份报告显示,HIV ASP基因确实被转录和翻译了2,3,4,5,6,7,8,9。虽然ASP反义转录本在体外已经完全特征化,但直到最近,关于ASPRNA在患者中实际产生的信息仍然缺失。

ASP 的顺序是反向的,并且与 env 互补。这是尝试检测 ASP 脚本时的主要障碍。标准逆转录聚合酶链反应(RT-PCR)方法使用基因特异性反义引物合成正确极性的互补DNA(cDNA)。然而,这种方法不允许确定初始RNA模板的方向(感觉或反义),因为RNA发夹或环可以在没有引源10的情况下在两个方向上对RT进行素脚,这种现象称为RT自吸。大多数ASP调查员回避了RT自吸问题,使用带有与HIV-11、12无关的序列标记的引注。然而,这一战略并没有消除这一现象的发生,并可能导致非特异性cDNA可能带入PCR11。

我们最近开发了一种用于反义RNA研究的新型股特异性RT-PCR测定,并用它来检测6名艾滋病毒感染者的ASPRNA,如表1所示。下面描述的程序以前曾由安东尼奥·曼卡雷拉等人发表。在我们的协议中,我们避免通过双种方法生产非特定 cDNA。首先,我们在高温(94°C)下变性RNA来消除RNA二次结构;其次,我们使用生物素化ASP特异性底漆逆转转录ASPRNA,并亲和-纯化产生的cDNA。通过这种方法,我们能够仅扩增我们的目标cDNA,因为其他非特异性RT产品要么被阻止生成(RNA的高温变性),要么在PCR(亲和纯化)之前消除。

Protocol

这项研究得到了瓦多瓦大学中心医院机构审查委员会的批准。 1. 外周血单核细胞(PBMC)感染HIV-1HXB2菌株 第 1 天:PBMC STIMULATION 将 PBMC 从健康的捐赠者布漆中分离出。 在完整的罗斯威尔公园纪念研究所(RPMI)1640培养基中,以1×106/mL的浓度计数和重新悬浮多溴联苯(PBMC),含有10%的胎儿牛血清(FBS)和1%的青霉素/链霉素(R-…

Representative Results

高温RNA变性与生物素化cDNA的亲亲纯化相结合,可防止在体外感染的PBMC和从患者分离的CD4+T细胞中扩增非特异性ASP产物。RT自吸已证明发生在反义RNA10,14,15,16,17的逆转录过程中。为了防止这种现象,我们开发了一种新方法,使用最初由Heist等人10描…

Discussion

在本报告中,我们描述了一种链特异性RT测定,用于检测从HIV-1感染者中分离的CD4+T细胞中的ASPRNA。RT 期间发生非特异性吸注会妨碍具有正确极性的 RNA 转录本的检测,从而导致对结果的误解。以前的研究小组已经制定了几种策略,旨在防止在RT反应期间与引物无关的cDNA合成。在3’末端标记反向引种与与HIV无关的序列已被证明能有效地实现股特异性扩增6,8,9。<sup class="xref…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢帕特里齐亚·阿梅利奥、亚历山德拉·诺托、克雷格·芬威克和马蒂厄·佩雷奥随时可以讨论我们的工作,并感谢艾滋病免疫机制实验室的所有人提供的宝贵技术援助。我们还要感谢VSB联合公司的约翰和亚伦·韦德尔,他们贡献了优秀的艺术品。最后,许多特别感谢所有的病人,没有他们,这项工作是不可能的。这项工作没有得到任何供资机构的具体赠款。

Materials

BD LSR II Becton Dickinson
BigDye Terminator v1.1 Cycle Sequencing Kit Applied Biosystem, Thermo Fisher Scientific 4337450
dNTP Set (100 mM) Invitrogen, Thermo Fisher Scientific 10297018
Dynabeads M-280 Streptavidin Invitrogen, Thermo Fisher Scientific 11205D
EasySep Human CD4+ T Cell Isolation Kit Stemcell Technologies 19052
Fetal Bovine Serum Biowest S1010-500
Fixation/Permeabilization Solution Kit Becton Dickinson 554714
HIV Gag p24 flow cytometry antibody – Kc57-FITC Beckman Coulter 6604665
Human IL-2 Miltenyi Biotec 130-097-743
Lectin from Phaseolus vulgaris (PHA) Sigma-Aldrich 61764-1MG
LIVE/DEAD Fixable Yellow Dead Cell Stain Kit, for 405 nm excitation Invitrogen, Thermo Fisher Scientific L34967
Mouse Anti-Human CD28 Becton Dickinson 55725
Mouse Anti-Human CD3 Becton Dickinson 55329
Primers and Probes Integrated DNA Technologies (IDT)
Penicillin-Streptomycin BioConcept 4-01F00-H
Platinum Taq DNA Polymerase High Fidelity Invitrogen, Thermo Fisher Scientific 11304011
Polybrene Infection / Transfection Reagent Sigma-Aldrich TR-1003-G
RNeasy Mini Kit Qiagen 74104
Roswell Park Memorial Institute (RPMI) 1640 Medium Gibco, Thermo Fisher Scientific 11875093
StepOnePlus Real-Time PCR System Applied Biosystem, Thermo Fisher Scientific 4376600
SuperScript III Reverse Transcriptase Invitrogen, Thermo Fisher Scientific 18080044
TaqMan Gene Expression Master Mix Applied Biosystem, Thermo Fisher Scientific 4369016
TOPO TA Cloning Kit for Subcloning, with One Shot TOP10 chemically competent E. coli cells Invitrogen, Thermo Fisher Scientific K450001
TURBO DNase (2 U/µL) Invitrogen, Thermo Fisher Scientific AM2238
Veriti Thermal Cycler Applied Biosystem, Thermo Fisher Scientific 4375786

References

  1. Miller, R. H. Human immunodeficiency virus may encode a novel protein on the genomic DNA plus strand. Science. 239 (4846), 1420-1422 (1988).
  2. Vanheebrossollet, C., et al. A Natural Antisense Rna Derived from the Hiv-1 Env Gene Encodes a Protein Which Is Recognized by Circulating Antibodies of Hiv+ Individuals. Virology. 206 (1), 196-202 (1995).
  3. Briquet, S., Vaquero, C. Immunolocalization studies of an antisense protein in HIV-1-infected cells and viral particles. Virology. 292 (2), 177-184 (2002).
  4. Clerc, I., et al. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology. 8, 74 (2011).
  5. Landry, S., et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 4, 71 (2007).
  6. Kobayashi-Ishihara, M., et al. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period. Retrovirology. 9, 38 (2012).
  7. Barbagallo, M. S., Birch, K. E., Deacon, N. J., Mosse, J. A. Potential control of human immunodeficiency virus type 1 asp expression by alternative splicing in the upstream untranslated region. DNA Cell Biol. 31 (7), 1303-1313 (2012).
  8. Laverdure, S., et al. HIV-1 Antisense Transcription Is Preferentially Activated in Primary Monocyte-Derived Cells. Journal of Virology. 86 (24), 13785-13789 (2012).
  9. Zapata, J. C., et al. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly. Virology. 506, 34-44 (2017).
  10. Haist, K., Ziegler, C., Botten, J. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs. PLoS One. 10 (5), 0120043 (2015).
  11. Lerat, H., et al. Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells. The Journal of Clinical Investigation. 97 (3), 845-851 (1996).
  12. Tuiskunen, A., et al. Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. J Gen Virol. 91, 1019-1027 (2010).
  13. Mancarella, A., et al. Detection of antisense protein (ASP) RNA transcripts in individuals infected with human immunodeficiency virus type 1 (HIV-1). Journal of General Virology. , (2019).
  14. Peyrefitte, C. N., Pastorino, B., Bessaud, M., Tolou, H. J., Couissinier-Paris, P. Evidence for in vitro falsely-primed cDNAs that prevent specific detection of virus negative strand RNAs in dengue-infected cells: improvement by tagged RT-PCR. J Virol Methods. 113 (1), 19-28 (2003).
  15. Boncristiani, H. F., Di Prisco, G., Pettis, J. S., Hamilton, M., Chen, Y. P. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virol J. 6, 221 (2009).
  16. Boncristiani, H. F., Rossi, R. D., Criado, M. F., Furtado, F. M., Arruda, E. Magnetic purification of biotinylated cDNA removes false priming and ensures strand-specificity of RT-PCR for enteroviral RNAs. J Virol Methods. 161 (1), 147-153 (2009).
  17. Craggs, J. K., Ball, J. K., Thomson, B. J., Irving, W. L., Grabowska, A. M. Development of a strand-specific RT-PCR based assay to detect the replicative form of hepatitis C virus RNA. J Virol Methods. 94 (1-2), 111-120 (2001).
  18. Barbeau, B., Mesnard, J. M. Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses. 3 (5), 456-468 (2011).
check_url/60511?article_type=t

Play Video

Cite This Article
Mancarella, A., Procopio, F. A., Achsel, T., De Crignis, E., Foley, B. T., Corradin, G., Bagni, C., Pantaleo, G., Graziosi, C. Detection of Human Immunodeficiency Virus Type 1 (HIV-1) Antisense Protein (ASP) RNA Transcripts in Patients by Strand-Specific RT-PCR. J. Vis. Exp. (153), e60511, doi:10.3791/60511 (2019).

View Video