Summary

健康参与者的下肢生物力学分析

Published: April 15, 2020
doi:

Summary

本文介绍了一种全面的实验方法,对两种可用于测量个体下肢生物力学的最新技术进行了测量。

Abstract

生物力学分析技术在研究人类运动方面非常有用。本研究的目的是在使用商业可用的系统向健康参与者引入下肢生物力学评估技术。为步态分析和肌肉力量测试系统引入了单独的协议。为确保步态评估的最大准确性,应注意标记位置和自定进度的跑步机适应时间。同样,参与者定位、练习试验和言语鼓励是肌肉力量测试的三个关键阶段。目前的证据表明,本文概述的方法可能对下肢生物力学的评估有效。

Introduction

生物力学的学科主要涉及研究压力、应变、载荷和生物系统的运动——固体和流体。它还涉及对车身结构、尺寸、形状和运动的机械效应的建模。多年来,这一领域的发展提高了我们对正常和病理步态、神经肌肉控制机制、生长机制和2型机学的理解。

本文的主要目标是介绍一种综合方法,介绍两种可用于测量个体下肢生物力学的最新技术。步态分析系统测量和量化步态生物力学通过使用自定速 (SP) 跑步机与增强现实环境相结合,该增强现实环境集成了 SP 算法来调节跑步机的速度,如 Sloot 等人3所述。肌肉力量测试设备被用作上肢康复的评估和治疗工具4。该装置可以客观地评估等轴测和等距模式下的各种运动生理模式或工作模拟任务。它目前被认为是上肢力量测量的黄金标准5,但与下肢具体有关的证据仍然不清楚。本文阐述了完成下肢步态和等轴测强度评估的详细方案。

在生物力学分析中,将功能性能评估(如步态分析)与肌肉性能的特定测试相结合是很有用的。这是因为,虽然可以假设增加肌肉力量提高功能性能,这可能并不总是明显的6。这种理解是改进康复方案及研究战略的未来设计,以评估这些方法所必需的。

Protocol

在一项获得伯恩茅斯大学研究伦理委员会(参考15005)的道德批准下,对所报告的方法进行了跟踪研究。 1. 参与者 招募健康成年人(年龄从23岁到63岁,均值=S.D.;42.0= 13.4,体重70.4×15.3公斤,身高175.5±9.8厘米;15名男性,15名女性)参加研究。为这项研究招募了30名参与者。 确保参与者没有自报头晕、平衡问题或行走困难史。 确保参与者不会遭受任何已知?…

Representative Results

表2给出了时空、运动学和动态步态参数的均值和标准差。MVIC所有30名参与者的数据都汇总在表3中。图 4和图 5分别提供了一个参与者左侧和右侧的典型数据集,其中显示了步态参数的图形表示形式。 所提交的数据代表了所有参与者获得的结果,并且与为步?…

Discussion

这项研究的贡献是在一个协议中准确和全面地描述以前没有一起描述的步态分析和肌肉力量测试相结合的技术。

为了获得步态分析的准确结果,有两个方面需要最大的关注:1) 标记放置和 2) 适应时间。测量数据的准确性在很大程度上取决于所用模型的准确性。影响准确性的其他关键因素包括相对于底层骨骼结构的表面性皮肤变形引起的错误标记运动,以及跟踪系统的分辨…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢约翰纳森·威廉姆斯博士对MATLAB数据处理的建议。

Materials

701 Small lever Baltimore Therapeutic Equipment Company (BTE) Not Available – Online link provided in description The unique attachment designed for the Primus RS to measure Knee Extension/Flexion – https://store.btetech.com/collections/primus/products/701-small-lever
D-Flow Software – Vresion 3.26 Motekforce Link Not Available – Online link provided in description Software used to control GRAIL system – https://summitmedsci.co.uk/products/motek-dflow-hbm-software/
Gait Offline Analysis (GOAT) – Version 2.3 Motekforce Link Not Available – Online link provided in description Software used for the analysis of the gait parameters – https://www.motekmedical.com/product/grail/
Gait Real-time Analysis Interactive Lab (GRAIL) Motekforce Link Not Available – Online link provided in description GRAIL system measures and quantifies gait biomechanics by using a virtual reality based self-paced (SP) treadmill – https://www.motekmedical.com/product/grail/
Leg Pad for 701 Baltimore Therapeutic Equipment Company (BTE) Not Available – Online link provided in description The unique attachment designed for the Primus RS to measure Knee Extension/Flexion – https://store.btetech.com/collections/primus/products/701-802-leg-pad
Positioning Chair Baltimore Therapeutic Equipment Company (BTE) Not Available – Online link provided in description Participant Positioning Chair is designed for assessment and treatment of the lower exteremeties. The chair is designed for multiple positions. https://www.btetech.com/product/primus/
Primus RS Baltimore Therapeutic Equipment Company (BTE) Not Available – Online link provided in description Primus RS equipment captures and reports real time objective data in Isotonic, Isometric, and Isokinetic resistance modes – https://www.btetech.com/wp-content/uploads/BTE-Rehabilitation-Equipment-PrimusRS-Brochure-1.pdf

References

  1. Lu, T. W., Chang, C. F. Biomechanics of human movement and its clinical applications. The Kaohsiung Journal of Medical Sciences. 28 (2 Suppl), S13-S25 (2012).
  2. Kaufman, K., An, K., Firestein, G. S. . Kelley and Firestein’s Textbook of Rheumatology (Tenth Edition). , 78-89 (2017).
  3. Sloot, L. H., van der Krogt, M. M., Harlaar, J. Self-paced versus fixed speed treadmill walking. Gait & Posture. 39 (1), 478-484 (2014).
  4. Beaton, D. E., O’Driscoll, S. W., Richards, R. R. Grip strength testing using the BTE work simulator and the jamar dynamometer: A comparative study. The Journal of Hand Surgery. 20 (2), 293-298 (1995).
  5. Jindal, P., Narayan, A., Ganesan, S., MacDermid, J. C. Muscle strength differences in healthy young adults with and without generalized joint hypermobility: a cross-sectional study. BMC Sports Science, Medicine & Rehabilitation. 8, 12 (2016).
  6. Muehlbauer, T., Granacher, U., Borde, R., Hortobágyi, T. Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults. Gerontology. 64 (1), 11-18 (2018).
  7. van den Bogert, A. J., Geijtenbeek, T., Even-Zohar, O., Steenbrink, F., Hardin, E. C. A real-time system for biomechanical analysis of human movement and muscle function. Medical & Biological Engineering & Computing. 51 (10), 1069-1077 (2013).
  8. . . HBM2 Reference Manual. , 9-11 (2017).
  9. Sloot, L. H., van der Krogt, M. M., Harlaar, J. Effects of adding a virtual reality environment to different modes of treadmill walking. Gait Posture. 39 (3), 939-945 (2014).
  10. Liu, W. Y., et al. Reproducibility and Validity of the 6-Minute Walk Test Using the Gait Real-Time Analysis Interactive Lab in Patients with COPD and Healthy Elderly. PLoS One. 11 (9), e0162444 (2016).
  11. Herman, T., Mirelman, A., Giladi, N., Schweiger, A., Hausdorff, J. M. Executive Control Deficits as a Prodrome to Falls in Healthy Older Adults: A Prospective Study Linking Thinking, Walking, and Falling. The Journals of Gerontology: Series A. 65 (10), 1086-1092 (2010).
  12. Geijtenbeek, T., Steenbrink, F., Otten, B., Even-Zohar, O. Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry. , 201-208 (2011).
  13. Zeni, J. A., Higginson, J. S. Gait parameters and stride-to-stride variability during familiarization to walking on a split-belt treadmill. Clinical Biomechanics (Bristol, Avon). 25 (4), 383-386 (2010).
  14. Meldrum, D., Cahalane, E., Conroy, R., Fitzgerald, D., Hardiman, O. Maximum voluntary isometric contraction: reference values and clinical application. Amyotroph Lateral Sclerosis. 8 (1), 47-55 (2007).
  15. Ancillao, A. . Modern Functional Evaluation Methods for Muscle Strength and Gait Analysis. , 133 (2018).
  16. Mun, J. H. A method for the reduction of skin marker artifacts during walking : Application to the knee. KSME International Journal. 17 (6), 825-835 (2003).
  17. Liu, P. C., Liu, J. F., Chen, L. Y., Xia, K., Wu, X. Intermittent pneumatic compression devices combined with anticoagulants for prevention of symptomatic deep vein thrombosis after total knee arthroplasty: a pilot study. Therapeutics and Clinical Risk Management. 13, 179-183 (2017).
  18. Al-Amri, M., Al Balushi, H., Mashabi, A. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking. Computer Methods in Biomechanics and Biomedical Engineering. 20 (16), 1669-1677 (2017).
  19. Zeni, J., Richards, J., Higginson, J. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait & Posture. 27 (4), 710-714 (2008).
  20. Tsaopoulos, D. E., Baltzopoulos, V., Richards, P. J., Maganaris, C. N. Mechanical correction of dynamometer moment for the effects of segment motion during isometric knee-extension tests. Journal of Applied Physiology. 111 (1), 68-74 (2011).
  21. Abernethy, P., Wilson, G., Logan, P. Strength and power assessment. Issues, controversies and challenges. Sports Medicine. 19 (6), 401-417 (1995).
  22. Kroll, W. Reliability of a Selected Measure of Human Strength. Research Quarterly, American Association for Health, Physical Education and Recreation. 33 (3), 410-417 (1962).
  23. Anzak, A., Tan, H., Pogosyan, A., Brown, P. Doing better than your best: loud auditory stimulation yields improvements in maximal voluntary force. Experimental Brain Research. 208 (2), 237-243 (2011).
  24. Belkhiria, C., De Marco, G., Driss, T. Effects of verbal encouragement on force and electromyographic activations during exercise. Journal of Sports Medicine and Physical Fitness. 58 (5), 750-757 (2018).
  25. Bickers, M. J. Does verbal encouragement work? The effect of verbal encouragement on a muscular endurance task. Clinical Rehabilitation. 7 (3), 196-200 (1993).
  26. Karaba-Jakovljevic, D., Popadic-Gacesa, J., Grujic, N., Barak, O., Drapsin, M. Motivation and motoric tests in sports. Medicinki Pregled. 60 (5-6), 231-236 (2007).
  27. Andreacci, J. L., et al. The effects of frequency of encouragement on performance during maximal exercise testing. Journal of Sports Science. 20 (4), 345-352 (2002).
  28. Rendos, N. K., et al. Variations in Verbal Encouragement Modify Isokinetic Performance. Journal of Strength and Conditioning Research. 33 (3), 708-716 (2019).

Play Video

Cite This Article
Bahadori, S., Wainwright, T. W. Lower Limb Biomechanical Analysis of Healthy Participants. J. Vis. Exp. (158), e60720, doi:10.3791/60720 (2020).

View Video