Summary

从人体 iPS 细胞中提取的网状工程心脏组织用于活体心肌修复

Published: June 09, 2020
doi:

Summary

本协议产生网状工程心脏组织,其中包含来自人类诱导多能干细胞的心血管细胞,以便研究心脏病的细胞植入疗法。

Abstract

目前的协议描述了产生可扩展的网状工程心脏组织(ECTs)的方法,这些组织由来自人类诱导多能干细胞(hiPSCs)的心血管细胞组成,这些细胞朝着临床使用的目标发展。HiPSC衍生的心肌细胞、内皮细胞和血管壁画细胞与凝胶基质混合,然后倒入具有矩形内部交错柱的聚二甲基硅氧烷(PDMS)组织模具中。到培养日,14个ETS成熟成一个1.5厘米x1.5厘米的网状结构与0.5毫米直径的硫纤维束。心肌细胞与每个束的长轴对齐,并自发地同步跳动。这种方法可以放大到更大的(3.0 厘米 x 3.0 厘米)网格 ECT,同时保持构造成熟度和功能。因此,从hiPSC衍生心脏细胞产生的网状EEC对于心脏再生范式可能是可行的。

Introduction

许多临床前研究和临床试验已经确认了细胞为基础的心脏再生疗法对心脏1,2,3,2失败的有效性。在各种细胞类型中,人类诱导多能干细胞(hiPSCs)凭借其增殖能力、产生各种心血管血统4、5,和全源性的潜力,有希望的细胞来源。此外,,组织工程技术已经使得将数百万个细胞转移到受损的心脏5,6,7,8。6,758

此前,我们报告了从hiPSC衍生的心血管系生成三维(3D)线性工程心脏组织(ECTs),使用商用的培养系统进行3D生物人工组织5,5,7。我们发现,ECT内血管内皮细胞和壁画细胞与心肌细胞共存,促进了结构和电生理组织的成熟。此外,我们验证了在免疫耐受大鼠心肌梗塞模型中植入hiPSC-ECTs的治疗潜力,以改善心脏功能,再生心肌,增强血管生成5。然而,此方法构建的线性 EC 是 1 mm x 10 mm 圆柱体,因此不适合植入临床前研究与较大的动物或临床用途。

基于成功利用组织模具利用大鼠骨骼肌细胞和心肌细胞9、人类ESC衍生心肌细胞10和小鼠 iPSCs 11生成多孔工程组织形成,我们开发了一种协议,利用聚二11氧化硅氧烷 (PDMS) 霉菌生成可扩展的 hiPSC 衍生更大的可植入组织。我们评估了一系列模具几何形状,以确定最有效的模具特性。与缺少毛孔或结的薄板或线性格式相比,具有多个束和结的网状 EC 在细胞生存能力、组织功能和可伸缩性方面表现出出色的特性。我们把网状ECT植入大鼠心肌梗死模型,并确认其治疗效果类似于植入的圆柱形ECT12。在这里,我们描述了生成 hiPSC 派生网格形状的 ECT 的协议。

Protocol

1. 维护高保和心血管分化 在从小鼠胚胎成纤维细胞(MEF-CM)中提取的有条件介质中,在具有人类基本成纤维细胞生长因子(hbFGF)的中,在薄涂层基底膜基质(生长因子减少,1:60稀释)4上扩展和维护hiPSC。注:我们使用了hiPSCs(4因子(10月3/4,Sox2,Klf4和c-Myc)行:201B6)。在每个细胞系的适当浓度下添加 hbFGF。拉米宁-511片段也可用于培养皿的涂层,而不是地下室膜?…

Representative Results

图1A,B 显示了CM+EC和MC协议的示意图。从CM+EC协议和MC从MC协议诱导CM和EC后,细胞混合调整最终MC浓度,以代表10-20%的总细胞。2 厘米宽的组织模具是根据 0.5 mm 厚 PDMS 板材(图2A,B) 的设计图纸制造的。600万个CM+EC+MC细胞与胶原蛋白一结合,并用基质和马球407预涂的组织模具(图2C)在初步实验中,我们制?…

Discussion

在完成对线性格式(hiPSC衍生的ECT5)的调查后,我们调整了协议,将hiPSC衍生的CMs、EC和MC混合在一起,以促进ETC内血管细胞的体外扩张,以及ECT和接受者心肌之间随后的体内血管耦合。

为了促进更大、可植入的网格 ECT 几何的生成,我们使用薄的 PDMS 表设计 3D 模具,加载柱排列在交错位置。在初步实验中,我们注意到ETS在凝胶压实过程中粘附在PDMS柱上,因?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了路易斯维尔大学Kosair慈善儿科心脏研究项目和RIKEN生物系统动力学研究中心的有机物项目的支持。我们发布的协议中使用的HIPSC由日本京都大学 iPS 细胞研究和应用中心提供。

Materials

Materials
Cell Culture Dishes 100×20 mm style Falcon/ Thomas scientific 9380C51
Multiwell Plates For Cell Culture 6well 50/CS Falcon / Thomas scientific 6902A01
Sylgard 184 Silicone Elastomer Kit Dow Corning 761036
Reagents
Accumax Innovative Cell Technologies AM-105
BMP4, recombinant (10µg) R&D RSD-314-BP-010
Collagen, Type I solution from rat tail Sigma C3867
Growth factor-reduced Matrigel Corning 356231
Human VEGF (165) IS, premium grade Miltenyi 130-109-385
Pluronic F-127, 0.2 µm filtered (10% Solution in Water) Molecular Probes P-6866
Recombinant human bFGF WAKO 060-04543
Recombinant Human/Mouse/Rat ActivinA (50µg) R&D 338-AC-050
rh Wnt-3a (10µg) R&D 5036-WN
Versene solution Gibco 15040066
Culture medium and supplements
10x MEM Invitrogen 11430
2 Mercaptro Ethanol SIGMA M6250
B27 supplement minus insulin Gibco A1895601
DMEM, high glucose Gibco 11965084
Fetal Bovine Serum (500ml) Any
Fetal Bovine Serum (500ml) Any
L-Glutamine Gibco 25030081
NaHCO3 Any
PBS 1x Gibco 10010-031
Penicillin-Streptomycin (5000 U/mL) Gibco 15070-063
RPMI1640 medium Gibco 21870092
αMEM Invitrogen 11900024
Flowcytometry
anti-TRA-1-60, FITC, Clone: TRA-1-60, BD Biosciences BD / Fisher 560380
anti-Troponin T, Cardiac Isoform Ab-1, Clone: 13-11, Thermo Scientific Lab Vision Fisher MS-295-P0
BD FACS Clean Solution BD 340345
BD FACSFlow Sheath Fluid BD 342003
BD FACSRinse Solution BD 340346
EDTA Any
Falcon Tube with Cell Strainer Cap (Case of 500) Corning 352235
Fetal Bovine Serum (500ml) Any
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for 405 nm excitation Molecular Probes L34957
PDGFRb; anti-CD140b, R-PE, Clone: 28D4, BD Biosciences BD / Fisher 558821
Saponin Sigma-Aldrich 47306-50G-F
VEcad-FITC; anti-CD144, FITC, Clone: 55-7H1, BD Biosciences BD / Fisher 560411
Zenon Alexa Fluor 488 Mouse IgG1 Labeling Kit Molecular Probes Z25002

References

  1. Sanganalmath, S. K., Bolli, R. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research. 113, 810-834 (2013).
  2. Fisher, S. A., Doree, C., Mathur, A., Martin-Rendon, E. Meta-Analysis of Cell Therapy Trials for Patients With Heart Failure. Circulation Research. 116, 1361-1377 (2015).
  3. Menasché, P., et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1. European Heart Journal. 36, 2011-2017 (2015).
  4. Masumoto, H., et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Scientific Reports. 4, 6716 (2014).
  5. Masumoto, H., et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Scientific Reports. 6, 29933 (2016).
  6. Zimmermann, W. H., et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine. 12, 452-458 (2006).
  7. Fujimoto, K. L., et al. Engineered fetal cardiac graft preserves its cardiomyocyte proliferation within postinfarcted myocardium and sustains cardiac function. Tissue engineering. Part A. 17, 585-596 (2011).
  8. Lancaster, J. J., et al. Surgical treatment for heart failure: cell-based therapy with engineered tissue. Vessel Plus. 2019, (2019).
  9. Bian, W., Liau, B., Badie, N., Bursac, N. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nature protocols. 4, 1522-1534 (2009).
  10. Zhang, D., et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 34, 5813-5820 (2013).
  11. Christoforou, N., et al. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PloS one. 8, 65963 (2013).
  12. Nakane, T., et al. Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue. Scientific Reports. 7, 45641 (2017).
  13. Kowalski, W. J., et al. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue. Microscopy and Microanalysis. 1, (2017).
check_url/61246?article_type=t

Play Video

Cite This Article
Nakane, T., Abulaiti, M., Sasaki, Y., Kowalski, W. J., Keller, B. B., Masumoto, H. Preparation of Mesh-Shaped Engineered Cardiac Tissues Derived from Human iPS Cells for In Vivo Myocardial Repair. J. Vis. Exp. (160), e61246, doi:10.3791/61246 (2020).

View Video