Summary

使用机械臂接触范式调查疼痛相关避免行为

Published: October 03, 2020
doi:

Summary

回避是慢性疼痛残疾的核心,但缺乏足够的范例来研究与疼痛有关的避免。因此,我们开发了一个范式,允许研究如何学习疼痛相关的避免行为(获取),传播到其他刺激(一般化),可以减轻(灭绝),以及它如何随后可能重新出现(自发恢复)。

Abstract

回避行为是从急性疼痛向慢性疼痛残疾过渡的关键原因。然而,缺乏生态上有效的范式来实验性地研究疼痛相关的避免。为了填补这一空白,我们开发了一个范式(机械臂接触范式),以研究疼痛相关避免行为发展背后的机制。现有的回避模式(主要是在焦虑研究的背景下)通常将回避作为实验者指导的低成本反应来运作,叠加在与巴甫洛夫恐惧调理过程中与威胁相关的刺激。相比之下,当前方法在避免工具学习(获取)和增加避免响应成本方面提供了更大的生态有效性。在范式中,参与者使用机械臂执行从起点到目标的触臂动作,并自由选择三种不同的运动轨迹。运动轨迹与痛苦的触电刺激配对的概率不同,在偏差和阻力方面需要努力。具体来说,痛苦的刺激可以(部分)避免,但代价是需要加大努力的动作。回避行为被作为每个试验中最短轨迹的最大偏差来操作。除了解释新范式如何帮助理解避免的获取之外,我们还描述了机械臂触手模式的适应(1)检查避免传播到其他刺激(一般化)、(2) 在实验室中建模临床治疗(使用反应预防避免的消亡),以及(3) 建模复发和灭绝后避免的回归(自发恢复)。鉴于生态有效性的提高,以及扩展和/或适应的多种可能性,机械臂接触模式提供了一个很有前途的工具,以促进对回避行为的调查,并进一步加深我们对其基本过程的理解。

Introduction

回避是对疼痛的适应性反应,它发出身体威胁的信号。然而,当疼痛成为慢性,疼痛和疼痛相关的避免失去他们的适应性目的。与此一致,慢性疼痛1、2、3、4、5、6、7、8的避险模式认为,将疼痛错误地解释为灾难性疼痛,引发对疼痛的恐惧增加,从而激发避免行为。 过度回避可导致慢性疼痛残疾的发展和维持,由于身体不使用和减少参与日常活动和愿望1,2,3,4,5,9。此外,鉴于没有疼痛可能被错误地归于避免而不是恢复,可以建立一个与疼痛有关的恐惧和避免的自我维持循环

尽管最近对《焦虑文学11》、《12》中的回避感兴趣,但关于疼痛领域回避的研究仍处于起步阶段。先前的焦虑研究,以有影响力的双重理论13为指导,通常认为恐惧会驱使避险。相应地,传统的回避范式12包括两个实验阶段,每个阶段对应一个因素:第一个建立恐惧(帕夫洛夫调理14阶段),第二个检查回避(仪器15阶段)。在帕夫洛夫的差别化调节过程中,中性刺激(有条件的刺激,CS+;例如,一个圆圈)与内在的逆向刺激(美国无条件刺激,例如电击)配对,自然产生无条件的反应(URs,例如恐惧)。第二个控制刺激从未与美国配对(CS-;例如,一个三角形)。在CS与美国配对后,CS+将在美国缺席的情况下引起恐惧本身(有条件的反应,CRs)。CS-来信号安全,不会触发CR。之后,在仪器调理过程中,参与者了解到,他们自己的行为(响应,R:例如,按下按钮)会导致某些后果(结果:O,例如,没有受到冲击)15,16。如果响应阻止负面结果,则重复响应的机会增加;这被称为负加固15。因此,在传统回避模式的帕夫洛夫阶段,参与者首先学习CS-US协会。随后,在工具阶段,引入了实验者指示的避免响应 (R),如果在 CS 演示期间执行,则取消美国,从而建立 R-O 关联。因此,CS 成为一种歧视性刺激 (SD),表示条件 R15的适当时机并激励其性能。除了一些实验显示疼痛报告17和疼痛相关的面部表情18的工具调节外,对疼痛工具学习机制的调查一般来说是有限的。

虽然上述标准回避范式阐明了许多回避的基本过程,但它也有几个限制5,19。首先,它不允许检查回避本身的学习或获取,因为实验者指示回避反应。让参与者在多个轨迹之间自由选择,因此,了解哪些反应是痛苦的/安全的,哪些轨迹是避免/不避免的,更准确地模型现实生活中,其中避免出现作为对疼痛的自然反应9。其次,在传统的避免模式中,按钮按下避免响应是免费的。然而,在现实生活中,回避对个人来说可能变得极其昂贵。事实上,高成本的避免尤其扰乱了日常运作例如,避免慢性疼痛会严重限制人们的社会和工作生活第三,按下/不按按钮等二分法反应也不太能很好地代表现实生活,因为现实生活中会发生不同程度的回避。在下列部分,我们描述了机械臂触手范式20如何解决这些限制,以及如何将基本范式扩展到多个新颖的研究问题。

获取回避
在范式中,参与者使用机械臂执行从起点到目标的触臂动作。运动被用作工具反应,因为它们非常类似于疼痛特异性,发人恐惧的刺激。球实际上代表参与者在屏幕上的动作(图1),使参与者能够实时跟踪自己的动作。在每次试验中,参与者在三个运动轨迹(由三个拱门(T1+T3)代表的三个运动轨迹之间自由选择,在努力程度和与痛苦的触电刺激(即疼痛刺激)配对的可能性方面各不相同。努力纵为偏离尽可能短的轨迹,并增加机械臂的阻力。具体来说,机器人的编程使阻力随着偏差而线性增加,这意味着参与者越偏离,对机器人施加的力就越大。此外,疼痛管理被编程为最短,最简单的轨迹 (T1) 总是与疼痛刺激配对 (100% 疼痛/无偏差或阻力)。中间轨迹 (T2) 与接受疼痛刺激的 50% 机会配对,但需要付出更多努力(中度偏差和阻力)。最长、最费力的轨迹 (T3) 从未与疼痛刺激配对,但需要付出最大努力才能达到目标(0% 疼痛/最大偏差、最强阻力)。避免行为作为每次试验中与最短轨迹( T1 )的最大偏差,这是一种更连续的避免措施,例如,按下或不按下按钮。此外,回避对策是以加大努力为代价的。此外,鉴于参与者在运动轨迹之间自由选择,并且没有明确了解实验性R-O(运动轨迹疼痛)突发事件,避免行为是工具性获得的。网上自我报告的恐惧与运动相关的疼痛和疼痛预期已被收集,作为对不同运动轨迹的有条件恐惧的衡量指标。疼痛预期也是应急意识和威胁评估21的指标。这种变量组合允许仔细研究恐惧、威胁评估和避免行为之间的相互作用。利用这个范式,我们不断证明实验性地获得回避20,22,23,24。

避免的概括
我们已经扩展了范式来研究回避23的概括性——一种可能导致过度回避的可能机制。帕夫洛夫恐惧泛化是指将恐惧传播到类似原始CS+的刺激或情况(一般刺激、GSs),恐惧随着与CS+相似性降低而下降(泛化梯度)25、26、27、28。恐惧概括最大限度地减少了重新学习刺激之间的关系,从而能够在不断变化的环境中迅速发现新威胁25、26、27、28。然而,过度的泛化导致对安全刺激的恐惧(GS类似于CS-),从而造成不必要的痛苦28,29。与此相呼应的是,使用巴甫洛夫恐惧泛化的研究表明,慢性疼痛患者过度概括与疼痛相关的恐惧30、31、32、33、34,而健康控制则表现出选择性的恐惧泛化。然而,如果过度的恐惧导致不适,过度回避可能最终导致功能障碍,由于避免安全运动和活动,并增加日常活动脱离1,2,3,4,9。尽管它在慢性疼痛残疾中起着关键作用,但关于避免的概括性研究很少。在适应研究回避概括的范式中,参与者首先获得回避,遵循上述20个程序。在随后的概括阶段,在没有疼痛刺激的情况下引入了三种新的运动轨迹。这些概括轨迹(G1–G3)与收购轨迹位于同一连续体上,分别类似于每个轨迹。具体来说,G1 的通用轨迹位于 T1 和 T2 之间,G2 位于 T2 和 T3 之间,G3 位于 T3 右侧。这样,就可以研究避免向新安全轨迹的概括。在之前的一项研究中,我们展示了自我报告的概括,但不是回避,可能暗示了疼痛相关的恐惧和避免泛化23的不同基础过程。

与响应预防一起避免的灭绝
治疗慢性肌肉骨骼疼痛中高度恐惧运动的主要方法是暴露疗法35-临床对应帕夫洛夫灭绝36,即通过在美国36缺乏CS+的反复经验减少CR。在接触慢性疼痛期间,患者进行可怕的活动或运动,以消除灾难性的信念和伤害预期34,37。由于这些信念不一定涉及疼痛本身,而是潜在的病理学,运动并不总是进行无痛在诊所34。根据抑制性学习理论38,39,灭绝学习不会抹去原来的恐惧记忆(如运动轨迹疼痛):相反,它创造了一种新的抑制灭绝记忆(如运动轨迹-无痛),它与原始的恐惧记忆竞争检索40,41。新颖的抑制记忆比原来的恐惧记忆40更依赖于上下文,认为被消灭的恐惧记忆容易重新出现(恐惧的回归)40,41,42。患者经常在暴露治疗期间(通过预防反应的灭绝,RPE)执行甚至微妙的避免行为,通过防止将安全误配到避免10,43来建立真正的恐惧灭绝。

回避的回报
即使在恐惧43、44、45、46灭绝之后,在避免回归方面复发在临床人群中仍然很常见。虽然已发现多个机制导致恐惧47的回归,但与回避有关的机制却鲜为人知。在这份手稿中,我们特别描述了自发的恢复,即由于时间的流逝,恐惧和回避的回归。机器人手臂接触模式已在为期两天的协议中实施,以调查回避的回归。在第1天,参与者首先接受收购培训的范式,如上所述20。在随后的 RPE 阶段,参与者无法执行避免响应,即他们只能执行灭绝下与疼痛相关的轨迹 (T1)。在第2天,为了测试自发恢复,所有轨迹都再次可用,但在没有疼痛刺激的情况下。使用这个范式,我们表明,在成功灭绝一天后,回避返回22。

Protocol

这里提出的议定书符合KU Leuven社会和社会伦理委员会(注册号:S-56505)和马斯特里赫特大学心理学和神经科学伦理审查委员会(注册号:185_09_11_2017_S1和185_09_11_2017_S2_A1)的要求。 1. 为测试会议准备实验室 测试会话前:向参与者发送一封电子邮件,告知他/她有关疼痛刺激的传递、实验的总体大纲和排除标准。健康参与者的排除标准包括:未满18岁:慢性疼痛;厌食症或…

Representative Results

与收购阶段(图2,由A表示)20的开始相比,参与者在收购阶段结束时避免更多(显示与最短轨迹有较大最大偏差),或与Yoked对照组(图3)23,48相比,表现出更多的避免行为。 与T1和T2相比,参与者对T3的恐惧程度较低,预计T3期间与T1和T220相比疼痛?…

Discussion

鉴于避免在慢性疼痛残疾1、2、3、4、5方面的关键作用,以及传统避免模式19所面临的局限性,有必要采用方法调查(与疼痛有关的)避免行为。此处介绍的机械臂触手范式解决了其中的一些限制。我们在一系列研究中采用了这种范式,这些研究一直证明我?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了荷兰科学研究组织(NWO)、荷兰(赠款ID 452-17-002)和比利时佛兰德斯研究基金会高级研究金(授予ID:12E3717N)授予安·默德斯的支持。约翰·弗拉延的贡献得到了比利时佛兰芒政府”阿塞内斯”长期结构资金梅图萨勒姆赠款的支持。

作者要感谢马斯特里赫特大学的雅科·朗纳和理查德·本宁为实验任务编程,并为描述的实验设计和创建图形。

Materials

1 computer and computer screen Intel Corporation 64-bit Intel Core Running the experimental script
40 inch LCD screen Samsung Group Presenting the experimental script
Blender 2.79 Blender Foundation 3D graphics software for programming the graphics of the experiment
C# Programming language used to program the experimental task
Conductive gel Reckitt Benckiser K-Y Gel Facilitates conduction from the skin to the stimulation electrodes
Constant current stimulator Digitimer Ltd DS7A Generates electrical stimulation
HapticMaster Motekforce Link Robotic arm
Matlab MathWorks For writing scripts for participant randomization schedule, and for extracting maximum deviation from shortest trajectory per trial
Qualtrics Qualtrics Web survey tool for psychological questionnaires
Rstudio Rstudio Inc. Statistical analyses
Sekusept Plus Ecolab Disinfectant solution for cleaning medical instruments
Stimulation electrodes Digitimer Ltd Bar stimulating electrode Two reusable stainless steel disk electrodes; 8mm diameter with 30mm spacing
Tablet AsusTek Computer Inc. ASUS ZenPad 8.0 For providing responses to psychological trait questinnaires
Triple foot switch Scythe USB-3FS-2 For providing self-report measures on VAS scale
Unity 2017 Unity Technologies Cross-platform game engine for writing the experimental script including presentations of electrocutaneous stimuli

References

  1. Crombez, G., Eccleston, C., Van Damme, S., Vlaeyen, J. W., Karoly, P. Fear-avoidance model of chronic pain: the next generation. The Clinical Journal of Pain. 28 (6), 475-483 (2012).
  2. Leeuw, M., et al. The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. Journal of Behavioral Medicine. 30 (1), 77-94 (2007).
  3. Vlaeyen, J., Linton, S. Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain. 153 (6), 1144-1147 (2012).
  4. Vlaeyen, J., Linton, S. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain. 85 (3), 317-332 (2000).
  5. Meulders, A. From fear of movement-related pain and avoidance to chronic pain disability: a state-of-the-art review. Current Opinion in Behavioral Sciences. 26, 130-136 (2019).
  6. Kori, S. H., Miller, R. P., Todd, D. D. Kinesophobia: a new view of chronic pain behavior. Pain Management. (3), 35-43 (1990).
  7. Lethem, J., Slade, P. D., Troup, J. D., Bentley, G. Outline of a Fear-Avoidance Model of exaggerated pain perception-I. Behaviour Research and Therapy. 21 (4), 401-408 (1983).
  8. Waddell, G., Newton, M., Henderson, I., Somerville, D., Main, C. J. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 52 (2), 157-168 (1993).
  9. Volders, S., Boddez, Y., De Peuter, S., Meulders, A., Vlaeyen, J. W. Avoidance behavior in chronic pain research: a cold case revisited. Behaviour Research and Therapy. 64, 31-37 (2015).
  10. Lovibond, P. F., Mitchell, C. J., Minard, E., Brady, A., Menzies, R. G. Safety behaviours preserve threat beliefs: Protection from extinction of human fear conditioning by an avoidance response. Behaviour Research and Therapy. 47 (8), 716-720 (2009).
  11. Hofmann, S. G., Hay, A. C. Rethinking avoidance: Toward a balanced approach to avoidance in treating anxiety disorders. Journal of Anxiety Disorders. 55, 14-21 (2018).
  12. Krypotos, A. M., Effting, M., Kindt, M., Beckers, T. Avoidance learning: a review of theoretical models and recent developments. Frontiers in Behavioral Neuroscience. 9, 189 (2015).
  13. Mowrer, O. H. Two-factor learning theory: summary and comment. Psychological Review. 58 (5), 350-354 (1951).
  14. Pavlov, I. P. . Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , (1927).
  15. Skinner, B. F. . Science and human behavior. , (1953).
  16. Thorndike, E. L. Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review: Monograph Supplements. 2 (4), 109 (1898).
  17. Linton, S. J., Götestam, K. G. Controlling pain reports through operant conditioning: a laboratory demonstration. Perceptual and Motor Skills. 60 (2), 427-437 (1985).
  18. Gatzounis, R., Schrooten, M. G., Crombez, G., Vlaeyen, J. W. Operant learning theory in pain and chronic pain rehabilitation. Current Pain and Headache Reports. 16 (2), 117-126 (2012).
  19. Krypotos, A. M., Vervliet, B., Engelhard, I. M. The validity of human avoidance paradigms. Behaviour Research and Therapy. 111, 99-105 (2018).
  20. Meulders, A., Franssen, M., Fonteyne, R., Vlaeyen, J. Acquisition and extinction of operant pain-related avoidance behavior using a 3 degrees-of-freedom robotic arm. Pain. 157 (5), (2016).
  21. Boddez, Y., et al. Rating data are underrated: Validity of US expectancy in human fear conditioning. Journal of Behavior Therapy and Experimental Psychiatry. 44 (2), 201-206 (2013).
  22. Gatzounis, R., Meulders, A. Once an Avoider Always an Avoider? Return of Pain-Related Avoidance After Extinction With Response Prevention. The Journal of Pain. , (2020).
  23. Glogan, E., Gatzounis, R., Meulders, M., Meulders, A. Generalization of instrumentally acquired pain-related avoidance to novel but similar movements using a robotic arm-reaching paradigm. Behaviour Research and Therapy. 124, 103525 (2020).
  24. Meulders, A., Franssen, M., Claes, J. Avoiding Based on Shades of Gray: Generalization of Pain-Related Avoidance Behavior to Novel Contexts. The Journal of Pain. , (2020).
  25. Kalish, H. I., Marx, M. . Learning: processes. , 207-297 (1969).
  26. Honig, W. K., Urcuioli, P. J. The legacy of Guttman and Kalish (1956): Twenty-five years of research on stimulus generalization. Journal of the Experimental Analysis of Behavior. 36 (3), 405-445 (1981).
  27. Ghirlanda, S., Enquist, M. A century of generalization. Animal Behaviour. 66 (1), 15-36 (2003).
  28. Dymond, S., Dunsmoor, J., Vervliet, B., Roche, B., Hermans, D. Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behavior Therapy. 46 (5), 561-582 (2015).
  29. Lissek, S., Grillon, C. Overgeneralization of conditioned fear in the anxiety disorders. Zeitschrift für Psychologie/Journal of Psychology. 218 (2), 146-148 (2010).
  30. Meulders, A., et al. Contingency learning deficits and generalization in chronic unilateral hand pain patients. The Journal of Pain. 15 (10), 1046-1056 (2014).
  31. Meulders, A., Jans, A., Vlaeyen, J. Differences in pain-related fear acquisition and generalization: an experimental study comparing patients with fibromyalgia and healthy controls. Pain. 156 (1), 108-122 (2015).
  32. Meulders, A., Meulders, M., Stouten, I., De Bie, J., Vlaeyen, J. W. Extinction of fear generalization: A comparison between fibromyalgia patients and healthy control participants. The Journal of Pain. 18 (1), 79-95 (2017).
  33. Harvie, D. S., Moseley, G. L., Hillier, S. L., Meulders, A. Classical Conditioning Differences Associated With Chronic Pain: A Systematic Review. The Journal of Pain. 18 (8), 889-898 (2017).
  34. Meulders, A. Fear in the context of pain: Lessons learned from 100 years of fear conditioning research. Behaviour Research and Therapy. 131, 103635 (2020).
  35. Vlaeyen, J., Morley, S., Linton, S., Boersma, K., de Jong, J. . Pain-Related Fear: Exposure Based Treatment for Chronic Pain. , (2012).
  36. Scheveneels, S., Boddez, Y., Vervliet, B., Hermans, D. The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment. Behaviour Research and Therapy. 86, 87-94 (2016).
  37. den Hollander, M., et al. Fear reduction in patients with chronic pain: a learning theory perspective. Expert Review of Neurotherapeutics. 10 (11), 1733-1745 (2010).
  38. Craske, M. G., et al. Optimizing inhibitory learning during exposure therapy. Behaviour Research Therapy. 46 (1), 5-27 (2008).
  39. Quirk, G. J., Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology: An Official Publication of the American College of Neuropsychopharmacology. 33 (1), 56-72 (2008).
  40. Bouton, M. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biological Psychiatry. 52 (10), 976-986 (2002).
  41. Bouton, M. E., Winterbauer, N. E., Todd, T. P. Relapse processes after the extinction of instrumental learning: renewal, resurgence, and reacquisition. Behavioural processes. 90 (1), 130-141 (2012).
  42. Haaker, J., Golkar, A., Hermans, D., Lonsdorf, T. B. A review on human reinstatement studies: an overview and methodological challenges. Learning & Memory. 21 (9), 424-440 (2014).
  43. Mineka, S. The role of fear in theories of avoidance learning, flooding, and extinction. Psychological Bulletin. 86 (5), 985-1010 (1979).
  44. Bravo-Rivera, C., Roman-Ortiz, C., Montesinos-Cartagena, M., Quirk, G. J. Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Frontiers In Behavioral Neuroscience. 9, 184 (2015).
  45. Vervliet, B., Indekeu, E. Low-cost avoidance behaviors are resistant to fear extinction in humans. Frontiers In Behavioral Neuroscience. 9, 351 (2015).
  46. Solomon, R. L., Kamin, L. J., Wynne, L. C. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. The Journal of Abnormal and Social Psychology. 48 (2), 291-302 (1953).
  47. Bouton, M. E., Swartzentruber, D. Sources of relapse after extinction in Pavlovian and instrumental learning. Clinical Psychology Review. 11 (2), 123-140 (1991).
  48. Davis, J., Bitterman, M. E. Differential reinforcement of other behavior (DRO): a yoked-control comparison. Journal of the Experimental Analysis of Behavior. 15 (2), 237-241 (1971).
  49. Bouton, M. E., Todd, T. P. A fundamental role for context in instrumental learning and extinction. Behavioural Processes. 104, 13-19 (2014).
  50. Bouton, M. E., Todd, T. P., Leon, S. P. Contextual control of discriminated operant behavior. The Journal of Experimental Psychology: Animal Learning and Cognition. 40 (1), 92-105 (2014).
  51. Pittig, A., Wong, A. H. K., Glück, V. M., Boschet, J. M. Avoidance and its bi-directional relationship with conditioned fear: Mechanisms, moderators, and clinical implications. Behaviour Research and Therapy. 126, 103550 (2020).
  52. Pittig, A., Dehler, J. Same fear responses, less avoidance: Rewards competing with aversive outcomes do not buffer fear acquisition, but attenuate avoidance to accelerate subsequent fear extinction. Behaviour Research and Therapy. 112, 1-11 (2019).
  53. Van Damme, S., Van Ryckeghem, D. M., Wyffels, F., Van Hulle, L., Crombez, G. No pain no gain? Pursuing a competing goal inhibits avoidance behavior. Pain. 153 (4), 800-804 (2012).
  54. Langley, P., et al. The impact of pain on labor force participation, absenteeism and presenteeism in the European Union. Journal of Medical Economics. 13 (4), 662-672 (2010).
  55. Breivik, H., Collett, B., Ventafridda, V., Cohen, R., Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. European Journal of Pain. 10 (4), 287-333 (2006).
  56. Claes, N., Crombez, G., Vlaeyen, J. W. Pain-avoidance versus reward-seeking: an experimental investigation. Pain. 156 (8), 1449-1457 (2015).
  57. Claes, N., Karos, K., Meulders, A., Crombez, G., Vlaeyen, J. W. S. Competing goals attenuate avoidance behavior in the context of pain. The Journal of Pain. 15 (11), 1120-1129 (2014).
  58. Soeter, M., Kindt, M. Dissociating response systems: erasing fear from memory. Neurobiology of Learning and Memory. 94 (1), 30-41 (2010).
  59. LeDoux, J., Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience. 19 (5), 269-282 (2018).
  60. Glogan, E., van Vliet, C., Roelandt, R., Meulders, A. Generalization and extinction of concept-based pain-related fear. The Journal of Pain. 20 (3), 325-338 (2019).
  61. Meulders, A., Vandael, K., Vlaeyen, J. W. Generalization of Pain-Related Fear Based on Conceptual Knowledge. Behavior Therapy. 48 (3), 295-310 (2017).
  62. Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychological Review. 77 (1), 32-48 (1970).
  63. Shook, N. J., Thomas, R., Ford, C. G. Testing the relation between disgust and general avoidance behavior. Personality and Individual Differences. 150, 109457 (2019).
  64. McCambridge, S. A., Consedine, N. S. For whom the bell tolls: Experimentally-manipulated disgust and embarrassment may cause anticipated sexual healthcare avoidance among some people. Emotion. 14 (2), 407-415 (2014).
  65. Lipp, O. V., Sheridan, J., Siddle, D. A. Human blink startle during aversive and nonaversive Pavlovian conditioning. The Journal of Experimental Psychology: Animal Learning and Cognition. 20 (4), 380-389 (1994).
  66. van Well, S., Visser, R. M., Scholte, H. S., Kindt, M. Neural substrates of individual differences in human fear learning: evidence from concurrent fMRI, fear-potentiated startle, and US-expectancy data. Cognitive, Affective, & Behavioral Neuroscience. 12 (3), 499-512 (2012).
  67. Davidson, R. J., Jackson, D. C., Larson, C. L. . Handbook of psychophysiology, 2nd ed. , 27-52 (2000).
  68. Benedek, M., Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods. 190 (1), 80-91 (2010).
  69. Leknes, S., Lee, M., Berna, C., Andersson, J., Tracey, I. Relief as a reward: hedonic and neural responses to safety from pain. PloS One. 6 (4), 17870 (2011).
  70. Vervliet, B., Lange, I., Milad, M. R. Temporal dynamics of relief in avoidance conditioning and fear extinction: Experimental validation and clinical relevance. Behaviour Research and Therapy. 96, 66-78 (2017).
  71. Leknes, S., et al. The importance of context: When relative relief renders pain pleasant. PAIN. 154 (3), 402-410 (2013).
  72. Vervliet, B., Lange, I., Milad, M. R. Temporal dynamics of relief in avoidance conditioning and fear extinction: Experimental validation and clinical relevance. Behaviour Research and Therapy. 96, 66-78 (2017).
  73. Deutsch, R., Smith, K. J. M., Kordts-Freudinger, R., Reichardt, R. How absent negativity relates to affect and motivation: an integrative relief model. Frontiers in Psychology. 6 (152), (2015).
  74. Vlemincx, E., et al. Why do you sigh? Sigh rate during induced stress and relief. Psychophysiology. 46 (5), 1005-1013 (2009).
  75. Kreibig, S. D. Autonomic nervous system activity in emotion: A review. Biological Psychology. 84 (3), 394-421 (2010).
  76. Pappens, M., Smets, E., Vansteenwegen, D., Van Den Bergh, O., Van Diest, I. Learning to fear suffocation: a new paradigm for interoceptive fear conditioning. Psychophysiology. 49 (6), 821-828 (2012).
  77. de Man, J., Stassen, N., Poppe, R., Meyer, J. J., Veltkamp, R., Dastani, M. Analyzing fear using single sensor EEG device. International Conference on Intelligent Technologies for Interactive Entertainment. , 86-96 (2016).
  78. Meulders, A., Vandebroek, N., Vervliet, B., Vlaeyen, J. W. S. Generalization Gradients in Cued and Contextual Pain-Related Fear: An Experimental Study in Healthy Participants. Frontiers in Human Neuroscience. 7, 345 (2013).
  79. Meulders, A., Vansteenwegen, D., Vlaeyen, J. W. S. The acquisition of fear of movement-related pain and associative learning: a novel pain-relevant human fear conditioning paradigm. Pain. 152 (11), 2460-2469 (2011).
  80. Meulders, A., Vlaeyen, J. W. S. The acquisition and generalization of cued and contextual pain-related fear: an experimental study using a voluntary movement paradigm. Pain. 154 (2), 272-282 (2013).
  81. Moore, D. J., Keogh, E., Crombez, G., Eccleston, C. Methods for studying naturally occurring human pain and their analogues. Pain. 154 (2), 190-199 (2013).
  82. Lewis, T. Pain in muscular ischemia: its relation to anginal pain. Archives of Internal Medicine. 49 (5), 713-727 (1932).
  83. Niederstrasser, N. G., et al. Pain catastrophizing and fear of pain predict the experience of pain in body parts not targeted by a delayed-onset muscle soreness procedure. The Journal of Pain. 16 (11), 1065-1076 (2015).
  84. Niederstrasser, N. G., et al. An experimental approach to examining psychological contributions to multisite musculoskeletal pain. The Journal of Pain. 15 (11), 1156-1165 (2014).
check_url/61717?article_type=t

Play Video

Cite This Article
Glogan, E., Gatzounis, R., Vandael, K., Franssen, M., Vlaeyen, J. W. S., Meulders, A. Investigating Pain-Related Avoidance Behavior using a Robotic Arm-Reaching Paradigm. J. Vis. Exp. (164), e61717, doi:10.3791/61717 (2020).

View Video