Summary

7.0特斯拉多发性硬化症的磁共振成像

Published: February 19, 2021
doi:

Summary

在这里,我们提出了一种方案,用于在7.0特斯拉下获取多发性硬化症(MS)患者大脑的磁共振(MR)图像。该协议包括设置的准备,包括射频线圈,与MS患者的标准化访谈程序,MR扫描仪中的受试者定位和MR数据采集。

Abstract

本文的总体目标是在多发性硬化症(MS)患者中以7.0特斯拉的速度展示最先进的超高场(UHF)磁共振(MR)方案。MS是一种慢性炎症性,脱髓鞘性,神经退行性疾病,其特征在于白色和灰质病变。通过使用1.5T和3 T的MRI检测空间和时间播散的T 2 – 高信号病变是临床实践中根据当前版本的2017年McDonald标准建立MS准确诊断的关键诊断工具。然而,MS病变与其他来源的脑白质病变的区分有时可能具有挑战性,因为它们在较低的磁场强度(通常为3 T)下具有相似的形态。超高场磁共振 (UHF-MR) 受益于信噪比的提高和空间分辨率的增强,这两者都是卓越成像的关键,从而更准确、更明确地诊断细微病变。因此,7.0 T 的 MRI 显示,通过提供 MS 特异性神经影像学标志物(例如,中央静脉体征、发丝边缘结构和 MS 灰质病变的分化),在克服 MS 鉴别诊断的挑战方面取得了令人鼓舞的结果。这些标志物和其他标志物可以通过T1 和T2(T 2*,相位,扩散)以外的其他MR造影剂来识别,并显着改善MS病变与其他神经炎症性疾病(如视神经脊髓炎和Susac综合征)中发生的MS病变的鉴别。在本文中,我们描述了我们目前使用不同的MR获取方法研究7.0 T的MS患者脑白质和灰质病变的技术方法。最新的协议包括MR设置的准备,包括为UHF-MR定制的射频线圈,标准化筛选,MS患者的安全和访谈程序,患者在MR扫描仪中的定位以及获取为检查MS量身定制的专用脑部扫描。

Introduction

多发性硬化症(MS)是中枢神经系统(CNS)最常见的慢性炎症和脱髓鞘疾病,可导致年轻人明显的神经功能障碍,并导致长期残疾1,2。MS的病理标志是脑灰质和白质中发生的脱髓鞘病变的积累,以及整个大脑中的弥漫性神经变性,即使在正常出现的白质(NAWM)中也是如此3,4。MS病理学表明,炎症在疾病的所有阶段驱动组织损伤,即使在疾病的进展阶段5。MS的最初临床表现通常伴有可逆的神经功能障碍发作,并被称为临床孤立综合征(CIS),当仅提示MS6,7时。在没有明确的CIS的情况下,在进行MS诊断时应谨慎行事:应通过随访确认诊断,并应推迟开始长期疾病改善治疗,等待其他证据8。

磁共振成像(MRI)是诊断MS和监测疾病进展9,10,11不可或缺的工具。磁场强度为1.5 T和3 T的MRI目前是临床实践中检测自旋自旋弛豫时间加权(T2)超潜病变并根据当前版本的2017 McDonald标准8建立MS准确诊断的关键诊断工具。MS的诊断标准强调需要证明病变在空间和时间上的播散,并排除替代诊断8,12。造影剂增强MRI是评估急性疾病和急性炎症的唯一方法8,但对潜在的长期钆脑沉积的日益关注可能会限制造影剂作为重要诊断工具的应用13,14,17。此外,MS病变与其他来源的脑白质病变的区分有时可能具有挑战性,因为它们在较低的磁场强度下具有相似的形态。

虽然MRI肯定是MS患者的最佳诊断工具,但MR检查和方案应遵循欧洲18,19的MS组磁共振成像(MAGNIMS)或北美20的多发性硬化症中心联盟(CMSC)的指南,用于MS患者的诊断,预后和监测。根据不同医院和国家的最新指南进行标准化的质量控制研究也至关重要21.

为MS诊断和疾病进展监测量身定制的MRI方案包括多种MRI对比,包括由纵向弛豫时间T1,自旋自旋弛豫时间T2,有效自旋自旋弛豫时间T2*和弥散加权成像(DWI)22控制的对比度。协调计划为MS中的MRI提供了共识报告,以朝着标准化方案迈进,促进临床翻译和跨站点数据的比较23,24,25。T2加权成像是公认的,并且经常用于临床实践中用于识别白质(WM)病变,其特征在于高信号外观26,27。虽然是MS28的重要诊断标准,但WM病变负荷仅与临床残疾的相关性较弱,因为它缺乏对病变严重程度和潜在病理生理学的特异性26,27,29。这一观察结果引发了对横向弛豫时间T2 30的参数映射的探索。T2*加权成像在MS成像中变得越来越重要。T2*加权MRI中的中心静脉征被认为是MS病变的特异性成像标志物27,31,32,33。T2*对铁沉积34,35敏感,这可能与疾病持续时间,活动和严重程度有关36,37,38。据报道,T2*还反映了患有轻微缺陷和早期MS的患者的脑组织变化,因此可能成为评估MS发展的工具,已经在早期阶段39,40。

MRI技术的改进有望更好地识别MS患者的CNS变化,并为临床医生提供更好的指导,以提高MS诊断的准确性和速度11。超高场(UHF,B0≥7.0 T)MRI受益于信噪比(SNR)的增加,可以投资于增强的空间或时间分辨率,这两者都是卓越成像的关键,以获得更准确和明确的诊断41,42。传输场(B1+)不均匀性是超高磁场43下使用的1H射频的不利属性,将受益于使用并行发射(pTx)RF线圈和RF脉冲设计方法的多通道传输,这些方法增强了B1+均匀性,从而促进了大脑44的均匀覆盖。

随着7.0 T MRI的出现,我们对脱髓鞘疾病(如MS)有了更多的了解,增加了病变检测的敏感性和特异性,中心静脉体征识别,软脑膜增强,甚至代谢变化45。MS病变早已从组织病理学研究显示为在静脉和静脉周围形成46。病变的周分布(中心静脉征兆)可以用T2*加权MRI46,47,483.0 T或1.5 T处识别,但可以通过7.0 T 49,50,51,52的UHF-MRI来识别。除中央静脉征外,7.0 T处的UHF-MRI改善或发现了MS特异性标志物,例如HYPOINTENSE边缘结构和MS灰质病变的分化53,54,55,56。用UHF-MRI更好地描绘这些标志物有望克服将MS病变与其他神经炎症性疾病(如Susac综合征53和视神经脊髓炎54)中发生的病变区分开来的一些挑战,同时还可以确定其他病症或MS变体中的常见致病机制,例如Baló的同心硬化症57,58。

认识到UHF-MRI在检测和鉴别MS病变方面的挑战和机遇,本文介绍了我们目前使用不同成像技术研究7.0 T时MS患者脑白质和灰质病变的技术方法。最新的协议包括MR设置的准备,包括为UHF-MR量身定制的射频(RF)线圈,标准化的筛选,安全性和MS患者的访谈程序,患者在MR扫描仪中的定位以及获取专用于MS的脑部扫描。本文旨在指导成像专家、基础研究人员、临床科学家、转化研究人员和技术人员,他们拥有从学员到高级用户和应用专家的各种经验和专业知识,进入MS患者的UHF-MRI领域,最终目标是跨学科领域协同连接技术开发和临床应用。

Protocol

该协议适用于由柏林慈善大学伦理委员会(批准号:EA1/222/17,2018/01/08)和柏林慈善大学数据保护部和公司治理批准的研究。在纳入研究之前,已获得所有受试者的知情同意。 1. 主题 注意:MS患者的招募通常在MR检查前几天至几周内进行,温度为7.0 T。 由门诊的神经科医生根据纳入标准(取决于神经免疫学问题)和排除标准(包括例如植入式医疗?…

Representative Results

一名26岁的女性被诊断患有复发性缓解性MS(RRMS),使用上述方案在7.0 T时进行检查(图11)。在MR图像中可以观察到B1+轮廓中的一些失真。当移动到更高的共振频率43时,这是预期的;较短的波长增加了破坏性和建设性干扰105,106。为了获取MR图像(图…

Discussion

这里介绍的方案描述了一系列具有不同对比度的MRI序列,这些序列通常用于检查7.0 T的MS患者,与新兴技术发展一起,它们为探索代谢或功能成像中更高级的应用提供了基础。

除脑部病变外,脊髓病变还经常影响MS患者,导致运动,感觉和自主神经功能障碍。然而,脊髓成像,特别是在7.0 T时,在技术上具有挑战性113。并行传输和并行成像的进一步发展需要克…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目(T.N.)已获得欧洲研究委员会(ERC)的部分资助,根据赠款协议No 743077(ThermalMR)的欧盟地平线2020研究和创新计划。作者希望感谢柏林超高现场设施(B.U.F.F.)的团队,德国柏林亥姆霍兹协会的Max Delbrueck分子医学中心;在瑞典隆德大学隆德大学生物成像中心的瑞典国家7T设施,以及在波兰卢布林的Maria Curie-Skłodowska大学的ECOTECH-COMPLEX寻求技术和其他援助。

Materials

7T TX/RX 24 Ch Head Coil Nova Medical, Inc., Wilmington, USA NM008-24-7S-013 1-channel circular polarized (CP) transmit (Tx), 24-channel receive (Rx) RF head coil
Magnetom 7T System Siemens Healthineers, Erlangen, Germany MRB1076 7.0 T whole body research scanner
syngoMR B17 Software Siemens Healthineers, Erlangen, Germany B17A image processing software for the Magnetom 7T system

References

  1. Filippi, M., et al. Multiple sclerosis. Nature Reviews Disease Primers. 4 (1), 43 (2018).
  2. Krieger, S. C., Cook, K., De Nino, S., Fletcher, M. The topographical model of multiple sclerosis: A dynamic visualization of disease course. Neurology: Neuroimmunology & Neuroinflammation. 3 (5), 279 (2016).
  3. Kutzelnigg, A., et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 128 (11), 2705-2712 (2005).
  4. Kuchling, J., Paul, F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology. 11, 450 (2020).
  5. Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harbor Perspectives in Medicine. 8 (3), (2018).
  6. Miller, D. H., Chard, D. T., Ciccarelli, O. Clinically isolated syndromes. The Lancet Neurology. 11 (2), 157-169 (2012).
  7. van der Vuurst de Vries, R. M., et al. Application of the 2017 Revised McDonald Criteria for Multiple Sclerosis to Patients With a Typical Clinically Isolated Syndrome. JAMA Neurologyogy. 75 (11), 1392-1398 (2018).
  8. Thompson, A. J., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 17 (2), 162-173 (2018).
  9. Filippi, M., Preziosa, P., Rocca, M. A. Multiple sclerosis. Handbook of Clinical Neurology. 135, 399-423 (2016).
  10. Rovira, A., de Stefano, N. MRI monitoring of spinal cord changes in patients with multiple sclerosis. Current Opinion in Neurology. 29 (4), 445-452 (2016).
  11. Filippi, M., et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. , (2019).
  12. Kuhle, J., et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Multiple Sclerosis Journal. 21 (8), 1013-1024 (2015).
  13. El-Khatib, A. H., et al. Gadolinium in human brain sections and colocalization with other elements. Neurology: Neuroimmunology & Neuroinflammation. 6 (1), 515 (2019).
  14. McDonald, R. J., et al. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology. 275 (3), 772-782 (2015).
  15. McDonald, R. J., et al. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities. Radiology. 285 (2), 546-554 (2017).
  16. Schlemm, L., et al. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Multiple Sclerosis. 23 (7), 963-972 (2017).
  17. Boyken, J., Niendorf, T., Flemming, B., Seeliger, E. Gadolinium Deposition in the Brain after Contrast-enhanced MRI: Are the Data Valid. Radiology. 288 (2), 630-632 (2018).
  18. Rovira, &. #. 1. 9. 2. ;. a. l., et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nature Reviews Neurology. 11, 471 (2015).
  19. Wattjes, M. P., et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-establishing disease prognosis and monitoring patients. Nature Reviews Neurology. 11 (10), 597-606 (2015).
  20. Traboulsee, A., et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. American Journal of Neuroradiology. 37 (3), 394-401 (2016).
  21. Sąsiadek, M., et al. Recommendations of the Polish Medical Society of Radiology and the Polish Society of Neurology for the routinely used magnetic resonance imaging protocol in patients with multiple sclerosis. Polish Journal of Radiology. 85, 272-276 (2020).
  22. Maranzano, J., et al. Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. American Journal of Neuroradiology. 40 (7), 1162-1169 (2019).
  23. Arevalo, O., Riascos, R., Rabiei, P., Kamali, A., Nelson, F. Standardizing Magnetic Resonance Imaging Protocols, Requisitions, and Reports in Multiple Sclerosis: An Update for Radiologist Based on 2017 Magnetic Resonance Imaging in Multiple Sclerosis and 2018 Consortium of Multiple Sclerosis Centers Consensus Guidelines. Journal of Computer Assisted Tomography. 43 (1), 1-12 (2019).
  24. Schmierer, K., et al. Towards a standard MRI protocol for multiple sclerosis across the UK. The British Journal of Radiology. 92 (1101), 20180926 (2019).
  25. Pereira, D. J., et al. Consensus Recommendations of the Multiple Sclerosis Study Group and the Portuguese Neuroradiological Society for the Use of Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 2. Acta Médica Portuguesa. 33 (1), 66-75 (2020).
  26. Zivadinov, R., Bakshi, R. Role of MRI in multiple sclerosis I: inflammation and lesions. Front Biosci. 9 (665), 28 (2004).
  27. Hemond, C. C., Bakshi, R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine. 8 (5), 028969 (2018).
  28. Thompson, A. J., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 17 (2), 162-173 (2018).
  29. Neema, M., et al. T1-and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. Journal of Neuroimaging. 17, 16-21 (2007).
  30. Shepherd, T. M., et al. New rapid, accurate T(2) quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients. NeuroImage. Clinical. 14 (2), 363-370 (2017).
  31. Tallantyre, E. C., et al. A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Investigative Radiology. 44 (9), 491-494 (2009).
  32. Geraldes, R., et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology. 14 (4), 199 (2018).
  33. Sinnecker, T., et al. Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology. 76 (12), 1446-1456 (2019).
  34. Bagnato, F., et al. Untangling the R2* contrast in multiple sclerosis: a combined MRI-histology study at 7.0 Tesla. Public Library of Science one. 13 (3), (2018).
  35. Walsh, A. J., et al. Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology. 267 (2), 531-542 (2013).
  36. Bozin, I., et al. Magnetic resonance phase alterations in multiple sclerosis patients with short and long disease duration. Public Library of Science one. 10 (7), 0128386 (2015).
  37. Ropele, S., et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Multiple Sclerosis Journal. 20 (13), 1692-1698 (2014).
  38. Walsh, A. J., et al. Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology. 270 (1), 186-196 (2014).
  39. Blazejewska, A. I., et al. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study. Journal of Magnetic Resonance Imaging. 41 (4), 1065-1070 (2015).
  40. Bonnier, G., et al. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Annals of Clinical and Translational Neurology. 1 (6), 423-432 (2014).
  41. Niendorf, T., Barth, M., Kober, F., Trattnig, S. From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. MAGMA. 29 (3), 309-311 (2016).
  42. Sinnecker, T., et al. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA. 6 (1), 16 (2015).
  43. Vaughan, J. T., et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magnetic Resonance in Medicine. 46 (1), 24-30 (2001).
  44. Padormo, F., Beqiri, A., Hajnal, J. V., Malik, S. J. Parallel transmission for ultrahigh-field imaging. NMR in Biomedicine. 29 (9), 1145-1161 (2016).
  45. Bruschi, N., Boffa, G., Inglese, M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. European Radiology Experimental. 4 (1), 59 (2020).
  46. Sati, P., et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nature Reviews Neurology. 12 (12), 714-722 (2016).
  47. Tan, I. L., et al. MR venography of multiple sclerosis. American Journal of Neuroradiology. 21 (6), 1039-1042 (2000).
  48. Maggi, P., et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Annals of Neurology. 76 (4), 594-608 (2014).
  49. Tallantyre, E. C., et al. A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Investigative Radiology. 44 (9), 491-494 (2009).
  50. Filippi, M., et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 142 (7), 1858-1875 (2019).
  51. Muller, K., et al. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. Journal of Neurology. , (2014).
  52. Sinnecker, T., et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Multiple Sclerosis. 19 (3), 316-325 (2013).
  53. Wuerfel, J., et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Multiple Sclerosis. 18 (11), 1592-1599 (2012).
  54. Sinnecker, T., et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 79 (7), 708-714 (2012).
  55. Kuchling, J., et al. Identical lesion morphology in primary progressive and relapsing-remitting MS–an ultrahigh field MRI study. Multiple Sclerosis. 20 (14), 1866-1871 (2014).
  56. Sinnecker, T., et al. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Archives of Neurology. 69 (6), 739-745 (2012).
  57. Behrens, J. R., et al. 7 Tesla MRI of Balo’s concentric sclerosis versus multiple sclerosis lesions. Annals of Clinical and Translational Neurology. 5 (8), 900-912 (2018).
  58. Blaabjerg, M., et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurology: Neuroimmunology & Neuroinflammation. 3 (3), 226 (2016).
  59. Noureddine, Y., et al. Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study. Magnetic Resonance Materials in Physics, Biology and Medicine. 28 (6), 577-590 (2015).
  60. Kraff, O., Quick, H. H. 7T: Physics, safety, and potential clinical applications. Journal of Magnetic Resonance Imaging. 46 (6), 1573-1589 (2017).
  61. Hoff, M. N., et al. Safety Considerations of 7-T MRI in Clinical Practice. Radiology. 292 (3), 509-518 (2019).
  62. Kraff, O., Quick, H. H. Sicherheit von Implantaten im Hochfeld- und Ultrahochfeld-MRT. Der Radiologe. 59 (10), 898-905 (2019).
  63. Fagan, A. J., et al. 7T MR Safety. Journal of Magnetic Resonance Imaging. , (2020).
  64. . MR Safety Guidance, Documents and Links: MR Safety Strategies to Help You Stay Current with MR Safety Standards Available from: https://www.ismrm.org/mr-safety-links/mr-safety-resources-page/ (2020)
  65. Versluis, M. J., et al. Subject tolerance of 7 T MRI examinations. Journal of Magnetic Resonance Imaging. 38 (3), 722-725 (2013).
  66. Theysohn, J. M., et al. Subjective acceptance of 7 Tesla MRI for human imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 21 (1-2), 63 (2008).
  67. Klix, S., et al. On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla. PLoS One. 10 (1), 0117095 (2015).
  68. Rauschenberg, J., et al. Multicenter study of subjective acceptance during magnetic resonance imaging at 7 and 9.4 T. Investigative Radiology. 49 (5), 249-259 (2014).
  69. Zurawski, J., Lassmann, H., Bakshi, R. Use of Magnetic Resonance Imaging to Visualize Leptomeningeal Inflammation in Patients With Multiple Sclerosis: A Review. JAMA Neurologyogy. 74 (1), 100-109 (2017).
  70. Radue, E. -. W., et al. Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology. 84 (8), 784-793 (2015).
  71. Filippi, M., et al. A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Annals of Neurology. 40 (6), 901-907 (1996).
  72. Mugler, J. P., Brookeman, J. R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonance in Medicine. 15 (1), 152-157 (1990).
  73. Lindig, T., et al. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images – the difficulty of choosing. NeuroImage. 170, 210-221 (2018).
  74. Nelson, F., Poonawalla, A., Hou, P., Wolinsky, J. S., Narayana, P. A. 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Multiple sclerosis. 14 (9), 1214-1219 (2008).
  75. Marques, J. P., et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 49 (2), 1271-1281 (2010).
  76. Kober, T., et al. MP2RAGE Multiple Sclerosis Magnetic Resonance Imaging at 3 T. Investigative Radiology. 47 (6), 346-352 (2012).
  77. Beck, E. S., et al. Improved Visualization of Cortical Lesions in Multiple Sclerosis Using 7T MP2RAGE. American Journal of Neuroradiology. 39 (3), 459-466 (2018).
  78. Bø, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D., Mørk, S. J. Subpial Demyelination in the Cerebral Cortex of Multiple Sclerosis Patients. Journal of Neuropathology, Experimental Neurology. 62 (7), 723-732 (2003).
  79. Kilsdonk, I. D., et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain. 139 (5), 1472-1481 (2016).
  80. Absinta, M., et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 85 (1), 18-28 (2015).
  81. Titelbaum, D. S., et al. Leptomeningeal Enhancement on 3D-FLAIR MRI in Multiple Sclerosis: Systematic Observations in Clinical Practice. Journal of Neuroimaging. 30 (6), 917-929 (2020).
  82. Schmidt, P., et al. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clinical. 23, 101849 (2019).
  83. Coulette, S., et al. Diagnosis and Prediction of Relapses in Susac Syndrome: A New Use for MR Postcontrast FLAIR Leptomeningeal Enhancement. American Journal of Neuroradiology. 40 (7), 1184-1190 (2019).
  84. Cohen-Adad, J., et al. T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex. NeuroImage. 60 (2), 1006-1014 (2012).
  85. Louapre, C., et al. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7T MRI. NeuroImage: Clinical. 12, 879-886 (2016).
  86. Liu, S., et al. Susceptibility-weighted imaging: current status and future directions. NMR in Biomedicine. 30 (4), 3552 (2017).
  87. Haacke, E. M., Xu, Y., Cheng, Y. C., Reichenbach, J. R. Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine. 52 (3), 612-618 (2004).
  88. Haacke, E. M., et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. Journal of Magnetic Resonance Imaging. 29 (3), 537-544 (2009).
  89. Pitt, D., et al. Imaging Cortical Lesions in Multiple Sclerosis With Ultra-High-Field Magnetic Resonance Imaging. Archives of Neurology. 67 (7), 812-818 (2010).
  90. Li, X., et al. Magnetic susceptibility contrast variations in multiple sclerosis lesions. Journal of Magnetic Resonance Imaging. 43 (2), 463-473 (2016).
  91. Dal-Bianco, A., et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathologica. 133 (1), 25-42 (2017).
  92. Sati, P. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI. Journal of Magnetic Resonance. 291, 101-109 (2018).
  93. Griswold, M. A., et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine. 47 (6), 1202-1210 (2002).
  94. Hammond, K. E., et al. Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. NeuroImage. 39 (4), 1682-1692 (2008).
  95. Haacke, E. M., et al. Quantitative susceptibility mapping: current status and future directions. Magnetic Resonance Imaging. 33 (1), 1-25 (2015).
  96. Langkammer, C., et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 267 (2), 551-559 (2013).
  97. Eskreis-Winkler, S., et al. Multiple sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. Journal of Magnetic Resonance Imaging. 42 (1), 224-229 (2015).
  98. Chawla, S., et al. Longitudinal study of multiple sclerosis lesions using ultra-high field (7T) multiparametric MR imaging. PLOS ONE. 13 (9), 0202918 (2018).
  99. Kolasinski, J., et al. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain. 135 (10), 2938-2951 (2012).
  100. De Santis, S., et al. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage: Clinical. 22, 101699 (2019).
  101. Filippi, M., et al. Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Multiple Sclerosis. 19 (4), 418-426 (2013).
  102. Granberg, T., et al. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain: a Journal of Neurology. 140 (11), 2912-2926 (2017).
  103. Holland, D., Kuperman, J. M., Dale, A. M. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 50 (1), 175-183 (2010).
  104. In, M. -. H., Posnansky, O., Beall, E. B., Lowe, M. J., Speck, O. Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach. PloS one. 10 (2), 0116320 (2015).
  105. Van de Moortele, P. F., et al. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magnetic Resonance in Medicine. 54 (6), 1503-1518 (2005).
  106. Collins, C. M., Liu, W., Schreiber, W., Yang, Q. X., Smith, M. B. Central brightening due to constructive interference with, without, and despite dielectric resonance. Journal of Magnetic Resonance Imaging. 21 (2), 192-196 (2005).
  107. Yang, Q. X., et al. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. Journal of Magnetic Resonance Imaging. 24 (1), 197-202 (2006).
  108. Teeuwisse, W. M., Brink, W. M., Webb, A. G. Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magnetic Resonance in Medicine. 67 (5), 1285-1293 (2012).
  109. van Gemert, J., Brink, W., Webb, A., Remis, R. High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magnetic Resonance in Medicine. 81 (5), 3370-3378 (2019).
  110. Vaidya, M. V., et al. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil. Journal of Magnetic Resonance Imaging. 48 (2), 431-440 (2018).
  111. Brink, W. M., vander Jagt, A. M., Versluis, M. J., Verbist, B. M., Webb, A. G. High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Investigative Radiology. 49 (5), 271-277 (2014).
  112. Lundkvist, M., et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Multiple Sclerosis. 19 (6), 757-764 (2013).
  113. Moccia, M., et al. Advances in spinal cord imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders. 12, 1756286419840593 (2019).
  114. Zhao, W., et al. Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine. 72 (1), 291-300 (2014).
  115. Sinnecker, T., et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology: Neuroimmunology & Neuroinflammation. 3 (4), 259 (2016).
  116. Wenz, D., et al. Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array. Magnetic Resonance in Medicine. 80 (2), 672-684 (2018).
  117. Huhn, K., Engelhorn, T., Linker, R. A., Nagel, A. M. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Frontiers in Neurology. 10 (84), (2019).
  118. Bolo, N. R., et al. Brain Pharmacokinetics and Tissue Distribution In Vivo of Fluvoxamine and Fluoxetine by Fluorine Magnetic Resonance Spectroscopy. Neuropsychopharmacology. 23 (4), 428-438 (2000).
  119. Ji, Y., et al. Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR in Biomedicine. 28 (6), 726-737 (2015).
  120. Starke, L., Pohlmann, A., Prinz, C., Niendorf, T., Waiczies, S. Performance of compressed sensing for fluorine-19 magnetic resonance imaging at low signal-to-noise ratio conditions. Magnetic Resonance in Medicine. , 1-17 (2019).

Play Video

Cite This Article
Waiczies, S., Els, A., Kuchling, J., Markenroth Bloch, K., Pankowska, A., Waiczies, H., Herrmann, C., Chien, C., Finke, C., Paul, F., Niendorf, T. Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla. J. Vis. Exp. (168), e62142, doi:10.3791/62142 (2021).

View Video