Summary

使用比率指标对原代神经元中的线粒体谷胱甘肽氧化还原状态进行实时成像

Published: October 20, 2021
doi:

Summary

本文介绍了一种方案,用于使用共聚焦活显微镜确定原代海马和皮质神经元中基底氧化还原状态和氧化还原反应的差异。该协议可以应用于其他细胞类型和显微镜,只需最少的修改。

Abstract

线粒体氧化还原稳态对神经元的活力和功能很重要。虽然线粒体含有几种氧化还原系统,但高度丰富的硫醇二硫化物氧化还原缓冲液谷胱甘肽被认为是抗氧化防御的核心参与者。因此,测量线粒体谷胱甘肽氧化还原电位提供了有关线粒体氧化还原状态和氧化应激的有用信息。戊二醇1-roGFP2 (Grx1-roGFP2) 是一种基于遗传编码的绿色荧光蛋白 (GFP) 的谷胱甘肽氧化还原电位比率指标,在 400 nm 和 490 nm 处具有两个氧化还原状态敏感的激发峰,在 510 nm 处具有单个发射峰。本文介绍了如何在原代海马和皮质神经元中对线粒体靶向Grx1-roGFP2进行共聚焦实时显微镜检查。它描述了如何评估稳态线粒体谷胱甘肽氧化还原电位(例如,比较疾病状态或长期治疗)以及如何测量急性治疗时的氧化还原变化(以兴奋性毒性药物 N-甲基-D-天冬氨酸(NMDA)为例)。此外,本文还介绍了Grx1-roGFP2和线粒体膜电位指示剂四甲基罗丹明乙酯(TMRE)的共同成像,以证明Grx1-roGPF2如何与其他指标进行多参数分析。该协议详细说明了如何(i)优化共聚焦激光扫描显微镜设置,(ii)应用药物进行刺激,然后用二酰胺和二硫甲状腺素进行传感器校准,以及(iii)使用ImageJ / FIJI分析数据。

Introduction

几种重要的线粒体酶和信号传导分子受到硫醇氧化还原调节1。此外,线粒体是活性氧的主要细胞来源,并且选择性地容易受到氧化损伤2。因此,线粒体氧化还原电位直接影响生物能量、细胞信号传导、线粒体功能,并最终影响细胞活力34。线粒体基质含有大量(1-15 mM)的硫醇二硫化物氧化还原缓冲谷胱甘肽(GSH),以维持氧化还原稳态并建立抗氧化防御56。GSH可以共价附着在靶蛋白(S-谷胱甘氨酸化)上以控制其氧化还原状态和活性,并被一系列减少氧化蛋白的解毒酶使用。因此,在研究线粒体功能和病理生理学时,线粒体谷胱甘肽氧化还原电位是一个高度信息性的参数。

roGFP2是GFP的一种变体,通过添加两个表面暴露的半胱氨酸而变得氧化还原敏感,形成人造二硫醇 – 二硫醚对78。它在~510nm处具有单个发射峰,在~400 nm和490 nm处具有两个激发峰。重要的是,两个激发峰的相对振幅取决于roGFP2的氧化还原状态(图1),使该蛋白质成为比例传感器。在Grx1-roGFP2传感器中,人戊二醇氧化氢-1(Grx1)已经融合到roGFP2910的N端。Grx1酶与roGFP2的共价连接为传感器提供了两项重大改进:它使传感器响应特定于GSH / GSSG谷胱甘肽氧化还原对(图1),并且它将GSSG和roGFP2之间的平衡速度提高了至少100,0009倍。因此,Grx1-roGFP2能够对细胞谷胱甘肽氧化还原电位进行特异性和动态成像。

Grx1-roGFP2成像可以在各种显微镜上进行,包括宽视场荧光显微镜,旋转盘共聚焦显微镜和激光扫描共聚焦显微镜。传感器在原代神经元中的表达可以通过各种方法实现,包括脂肪感染11,DNA /磷酸钙共沉淀12,病毒介导的基因转移或使用转基因动物作为细胞源(图2)。本文使用含有1:1比例的AAV1和AAV2衣壳蛋白 1314 的假型重组腺相关病毒(rAAV)进行实验。使用该载体,通常在感染后 4-5 天达到最大传感器表达,并保持稳定至少 2 周。我们已经成功地将Grx1-roGFP2用于小鼠和大鼠的原代海马和皮质神经元。

在本文中,rAAV介导的线粒体靶向Grx1-roGFP2在原代大鼠海马和皮质神经元中的表达用于评估基础线粒体谷胱甘肽氧化还原状态及其急性扰动。为共聚焦实时成像提供了一个协议,其中包含有关如何(i)优化激光扫描共聚焦显微镜设置,(ii)运行实时成像实验以及(iii)使用FIJI分析数据的详细说明。

Protocol

所有动物实验均符合国家和机构指南,包括欧洲议会理事会指令2010/63 /EU,并已获得内政部的完全道德批准(海德堡大学动物福利办公室和卡尔斯鲁厄Regierungspraesidium,许可证T14 /21和T13/21)。根据标准程序从新生小鼠或大鼠幼崽中制备原代海马和皮质神经元,并如前所述维持12-14天13。 1. 溶液的制备 成像缓冲液的库存解决方案 根据 …

Representative Results

生长因子戒断后稳态线粒体氧化还原状态差异的定量分析为了证明线粒体氧化还原状态稳态差异的定量,在成像前将标准培养基中生长的原代神经元与没有生长因子培养48小时的神经元进行比较。生长因子戒断导致72小时16后凋亡神经元细胞死亡。在48小时后对细胞进行成像,以测试在此之前是否在线粒体氧化还原状态发生变化。在聚L-鸟氨酸包被盖玻片上生长的原…

Discussion

线粒体氧化还原状态的定量和动态测量提供了有关线粒体和细胞生理学的重要信息。有几种荧光化学探针可用于检测活性氧,”氧化还原应激”或”氧化应激”。然而,后一术语没有明确界定,往往缺乏特异性91718。与化学染料相比,Grx1-roGFP2具有几个优点919:(i)作为激发比传感?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了Deutsche Forschungsgemeinschaft(BA 3679/5-1;对于 2289:BA 3679/4-2)。A.K.由ERASMUS +奖学金支持。我们感谢Iris Bünzli-Ehret,Rita Rosner和Andrea Schlicksupp准备了原代神经元。我们感谢Tobias Dick博士提供pLPCX-mito-Grx1-roGFP2。 图4 所示的实验是在海德堡大学尼康成像中心进行的。 图2 是用 BioRender.com 准备的。

Materials

reagents
Calcium chloride (CaCl2·2H2O) Sigma-Aldrich C3306
Diamide (DA) Sigma-Aldrich D3648
Dithiothreitol (DTT) Carl Roth GmbH 6908.1
Glucose (2.5 M stock solution) Sigma-Aldrich G8769
Glucose Sigma-Aldrich G7528
Glycine neoFroxx GmbH LC-4522.2
HEPES (1 M stock solution) Sigma-Aldrich 15630-080
HEPES Sigma-Aldrich H4034
Magnesium chloride (MgCl2·6H2O) Sigma-Aldrich 442611-M
N-methyl-D-aspartate (NMDA) Sigma-Aldrich M3262
Potassium chloride (KCl) Sigma-Aldrich P3911
Sodium chloride (NaCl) neoFroxx GmbH LC-5932.1
Sodium pyruvate (0.1 M stock solution) Sigma-Aldrich S8636
Sodium pyruvate Sigma-Aldrich P8574
Sucrose Carl Roth GmbH 4621.1
Tetramethylrhodamine ethyl ester perchlorate (TMRE) Sigma-Aldrich 87917
equipment
imaging chamber Life Imaging Services (Basel, Switzerland) 10920 Ludin Chamber Type 3 for Ø12mm coverslips
laser scanning confocal microscope, microscope Leica DMI6000
laser scanning confocal microscope, scanning unit Leica SP8
peristaltic pump VWR PP1080 181-4001
spinning disc confocal microscope, camera Hamamatsu C9100-02 EMCCD
spinning disc confocal microscope, incubationsystem TokaiHit INU-ZILCF-F1
spinning disc confocal microscope, microscope Nikon Ti microscope
spinning disc confocal microscope, scanning unit Yokagawa CSU-X1
software
FIJI https://fiji.sc
StackReg plugin https://github.com/fiji-BIG/StackReg/blob/master/src/main/java/StackReg_.java
TurboReg plugin https://github.com/fiji-BIG/TurboReg/blob/master/src/main/java/TurboReg_.java

References

  1. Roede, J. R., Go, Y. M., Jones, D. P. Redox equivalents and mitochondrial bioenergetics. Methods in Molecular Biology. 810, 249-280 (2012).
  2. Turrens, J. F. Mitochondrial formation of reactive oxygen species. Journal of Physiology. 552, 335-344 (2003).
  3. Lin, M. T., Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443 (7113), 787-795 (2006).
  4. Manfredi, G., Beal, M. F. The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathology. 10 (3), 462-472 (2000).
  5. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., Fernandez-Checa, J. C. Mitochondrial glutathione, a key survival antioxidant. Antioxidants & Redox Signaling. 11 (11), 2685-2700 (2009).
  6. Murphy, M. P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxidants & Redox Signaling. 16 (6), 476-495 (2012).
  7. Dooley, C. T., et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. Journal of Biological Chemistry. 279 (21), 22284-22293 (2004).
  8. Hanson, G. T., et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. Journal of Biological Chemistry. 279 (13), 13044-13053 (2004).
  9. Gutscher, M., et al. Real-time imaging of the intracellular glutathione redox potential. Nature Methods. 5 (6), 553-559 (2008).
  10. Morgan, B., Sobotta, M. C., Dick, T. P. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radical Biology & Medicine. 51 (11), 1943-1951 (2011).
  11. Marwick, K. F. M., Hardingham, G. E. Transfection in primary cultured neuronal cells. Methods in Molecular Biology. 1677, 137-144 (2017).
  12. Kohrmann, M., et al. convenient, and effective method to transiently transfect primary hippocampal neurons. Journal of Neuroscience Research. 58 (6), 831-835 (1999).
  13. Depp, C., Bas-Orth, C., Schroeder, L., Hellwig, A., Bading, H. Synaptic activity protects neurons against calcium-mediated oxidation and contraction of mitochondria during excitotoxicity. Antioxidants & Redox Signaling. 29 (12), 1109-1124 (2018).
  14. Hauck, B., Chen, L., Xiao, W. Generation and characterization of chimeric recombinant AAV vectors. Molecular Therapy. 7 (3), 419-425 (2003).
  15. Brand, M. D., Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochemical Journal. 435 (2), 297-312 (2011).
  16. Zhang, S. J., et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genetics. 5 (8), 1000604 (2009).
  17. Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta. 1840 (2), 730-738 (2014).
  18. Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 4, 180-183 (2015).
  19. Lukyanov, K. A., Belousov, V. V. Genetically encoded fluorescent redox sensors. Biochimica et Biophysica Acta. 1840 (2), 745-756 (2014).
  20. Nietzel, T., et al. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences of the United States of America. 117 (1), 741-751 (2020).
  21. Albrecht, S. C., et al. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. Journal of Biomolecular Screening. 19 (3), 379-386 (2014).
  22. Albrecht, S. C., Barata, A. G., Grosshans, J., Teleman, A. A., Dick, T. P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metabolism. 14 (6), 819-829 (2011).
  23. Breckwoldt, M. O., et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nature Medicine. 20 (5), 555-560 (2014).
  24. Ricke, K. M., et al. Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. Journal of Neuroscience. 40 (9), 1975-1986 (2020).
  25. Bjornberg, O., Ostergaard, H., Winther, J. R. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein. Biochemistry. 45 (7), 2362-2371 (2006).
  26. Shokhina, A. G., et al. Red fluorescent redox-sensitive biosensor Grx1-roCherry. Redox Biology. 21, 101071 (2019).
check_url/63073?article_type=t

Play Video

Cite This Article
Katsalifis, A., Casaril, A. M., Depp, C., Bas-Orth, C. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator. J. Vis. Exp. (176), e63073, doi:10.3791/63073 (2021).

View Video