Summary

使用比色皿型快速重复率荧光计测量 Colacium sp.附着阶段的光生理学

Published: November 12, 2021
doi:

Summary

快速重复率荧光计(FRRf)是测量光系统II光生理学和初级生产率的有益方法。在这里,我们描述了一种方案,使用比色皿型FRRf测量底物浮游动物上上生性藻类, Colacium sp.的PSII光生理学。

Abstract

快速重复率荧光计(FRRf)是测量光系统II(PSII)光生理学和初级生产率的有益方法。虽然FRRf可以测量各种真核藻类和蓝藻的PSII吸收截面(σ PSII),最大光化学效率(Fv / Fm),有效光化学效率(Fq/ Fm)和非光化学淬灭(NPQNSV),但迄今为止几乎所有的FRRf研究都集中在浮游植物上。在这里,该协议描述了如何测量在生藻属的PSII光生理学。 Ehrenberg 1834(Euglenophyta),在其附着阶段(附着在浮游动物上),使用比色皿型FRRf。首先,我们估计了底物浮游动物(Scapholeberis mucronata O.F. Müller 1776,Cladocera,Daphniidae)对基线荧光和浮游可乐菌的σ PSIIFv / FmFq‘/FmNPQNSV的影响。为了验证这种方法,我们记录了粘液链球菌附着的Colacium sp.的光生理学测量结果,并将这些结果与其浮游阶段进行了比较。具有代表性的结果表明,该协议如何确定钙(Ca)和锰(Mn)对Colacium sp.光生理学的影响,并确定Mn富集在附着和浮游阶段之间的各种影响。最后,我们讨论了该协议对其他周生藻类的适应性。

Introduction

叶绿素可变荧光是测量藻类光系统II(PSII)光生理学的有用工具。藻类通过改变其PSII光生理学来应对各种环境压力,例如过量的光照和营养缺乏。快速重复率荧光计 (FRRf) 是测量 PSII 光生理学12 和估算初级生产力134 的常用方法,能够监测浮游植物 PSII 光生理学以及跨宽空间和时间尺度的初级生产力567。FRRf可以同时测量PSII(σ PSII)吸收截面,反应中心([RCII])浓度,最大光化学效率(Fv / Fm),有效光化学效率(Fq‘/Fm)和非光化学淬灭(NPQNSV)(表1)。通常,Fv/FmFq′/Fm 被定义为 PSII 活性 8,而 NPQNSV 被定义为相对散热能量9

重要的是,FRRf的单周转(ST)闪光完全降低了初级醌电子受体QA,但不会降低塑性醌池。相反,脉冲幅度调制(PAM)荧光计的多次周转(MT)闪光可以减少两者。与MT方法相比,ST方法具有明显的优势,通过同时测量Fv / Fm,Fq′/ Fm‘,NPQNSVσ PSII10的恢复动力学来识别NPQNSV的可能起源。迄今为止,已有几种类型的FRRf仪器,如潜水式、比色皿式和流通型。潜水式 FRRf 可在海洋和湖泊中进行原位测量,而比色皿型 FRRf 适用于测量小样品量。流通型通常用于连续测量地表水中浮游植物的光生理学。

鉴于 PAM 荧光计(包括比色皿型)的发展,适用于广泛的受试者11,PAM 荧光计在藻类光生理学研究中仍然比 FRRf 更常见12。例如,尽管这些工具之间的样品室结构和比色皿容量仅略有不同,但比色皿型PAM已应用于浮游植物131415,底栖微藻161718,冰藻19和生化藻类20,而比色皿型FRRf主要应用于浮游植物212223 和有限数量的冰藻群落2425。鉴于其有效性,比色皿型FRRf同样适用于底栖和表生藻类。因此,扩展其应用将为PSII光生理学提供相当多的见解,特别是对于鲜为人知的生代藻类光生理学。

生代藻类很少受到关注,很少有研究检查它们的PSII光生理学2026,很可能是因为它们在水生食物网中的作用很小2728。然而,包括表生性藻类在内的表生元可以对浮游动物群落动态产生积极影响,例如增加繁殖和存活率2930,以及对过程产生负面影响,例如增加下沉率2931 和对视觉捕食者的脆弱性3233343536.因此,探索控制浮游动物群落中表观生物动力学的环境和生物学因素至关重要。

在生代藻类中,Colacium Ehrenberg 1834(Euglenophyta)是一种常见的淡水藻类群32373839,具有不同的生命阶段,包括附着(图1A-D),非运动浮游(图1E,F)和运动浮游阶段4041.在非运动浮游阶段,细胞以单细胞浮游生物,聚集菌落或单层片状菌落的形式存在,被粘液覆盖42。在附着阶段,Colacium sp.使用从细胞前端排泄的粘液373941附着在底物生物(碱性)上,特别是微甲壳类4143。它们的生命周期还包括从蜕皮的外骨骼或死亡的基底骨骼中分离出来,并与鞭毛一起游泳以找到另一种底物生物体39。浮游和附着阶段都可以通过有丝分裂40增加其种群规模。虽然它们的附着阶段被假设为收集资源的进化特征,如light44和微量元素414546,或作为分散策略27,但关于这些方面的实验证据很少374144,关键附着机制在很大程度上是未知的。例如,Rosowski和Kugrens预计Colacium从基质桡足类41中获得锰(Mn),集中在外骨骼47中。

在这里,我们描述了如何使用比色皿型FRRf测量浮游藻类的PSII光生理学以及用Colacium sp.细胞靶向附着藻类(附着在浮游动物身上)的相关应用方法。我们使用配备三个发光二极管(LED)的Act2系统,它们提供以444 nm,512 nm和633 nm48为中心的闪光激发能量。在这里,444 nm(蓝色)对应于叶绿素a(Chl-a)的吸收峰,而512nm(绿色)和633nm(橙色)分别对应于藻红素和藻蓝蛋白的吸收峰。荧光信号检测峰为682 nm,半带宽为30 nm。由于在自然环境中很难找到Colacium sp.的浮游阶段,因此收集了它们附着的阶段进行实验。在众多的底物生物中,Scapholeberis mucronata O.F. Müller 1776(Branchiopoda,Daphniidae;图1A,B,G)是最容易处理的,因为它们的游泳速度慢,体型大(400-650μm)和独特的行为(倒挂在水面上)。因此,该协议使用附着在S. mucronata上的Colacium sp.作为Colacium-basibiont系统的案例研究。为了避免来自肠道内容物的荧光,S. mucronata被饿死。由于之前的一项研究报告称,来自肠道内容物(摄入的藻类)的荧光信号在40分钟后显示五倍49,我们预计90分钟的饥饿足以最大限度地减少肠道含量荧光影响FRRf测量的可能性,同时对Colacium sp.的实验压力的影响最小,例如营养缺乏。此外,该方案还用于阐明Colacium sp.的附着机理,并确定钙(Ca)和锰(Mn)两种金属如何影响浮游和附着阶段的光生理学。钙以多种方式在光合途径50中起关键作用,并且两种金属都是构建PSII51的析氧复合物所必需的。由于钙和锰高度集中在甲壳类浮游动物47的甲壳中,我们假设如果该生命阶段在附着阶段从S. mucronata获得这些元素,则Colacium sp.光生理学可能对浮游阶段的Ca和Mn富集反应更突出。

Protocol

1. 抽样 通过水桶从水面收集湖水。为了靶向附着在S. mucronata(图1A-C)上的Colacium sp.使用100μm尼龙网过滤0.5-10 L的湖水52。注意: S. mucronata 通常密集聚集在浅层,富营养化,浑浊的水中,例如芦苇(芦苇)区域。 将浓缩样品储存在500 mL塑料瓶中,加入350 mL湖水。存放在黑暗条件下。 在?…

Representative Results

多达5个个体(inds)mL−1的基线荧光(图5)或Chl-a荧光(图6)没有显着影响。然而,当粘液链球菌为7.5 inds·mL−1时,Fv/Fm和NPQNSV受到显著影响。因此,为了测量Colacium sp.在附着阶段的光生理学,我们选择了具有较高Colacium sp.负荷的S. mucronata,以达到?…

Discussion

该协议首次证明,在自然环境中附着阶段,Colacium sp.的光生理学与其在AF-6介质中的浮游阶段相当。此外,当密度为≤5 inds·mL−1时,饥饿的S. mucronata的肠道内容物不影响基线和Chl-a荧光(图5图6)。这些结果表明,该协议可以在低底物生物丰度下测量附着阶段Colacium sp.的光生理学,而无需校正。然而,步骤3.2.1-3.2.8?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了滋贺县合作研究基金的支持,该基金在日本振兴地区补助金和日本环境省环境研究与技术发展基金(第5-1607号)下,题为“保护水环境健全性的水质和湖底环境研究”。https://www.kantei.go.jp/jp/singi/tiiki/tiikisaisei/souseikoufukin.html。作者要感谢Enago(www.enago.jp)的英语评论。

Materials

Acrodisc syringe filter Pall Corporation, Ann Arbor, MI, USA 0.2 μm pore size
Act2Run CTG Ltd., West Molesey, UK
Biotin Wako 023-08711 AF-6 medium
CaCl2·2H2O Wako 031-25031 AF-6 medium
CaCO3 Wako 036-00382 AF-6 medium
Citric acid Wako 036-05522 AF-6 medium
CoCl2·6H2O Wako 036-03682 AF-6 medium
Concentrated Chlorella Recenttec, Tokyo, Japan 20 mg C·mL1 ; store at 4 °C
FastOcean Act2 CTG Ltd., West Molesey, UK
Fe-citrate Wako 093-00952 AF-6 medium
FeCl3·6H2O Wako 091-00872 AF-6 medium
HCLP-880PF Nippon Medical and Chemical Instruments
 Co., Ltd., Osaka, Japan
With LED light bulbs
K2HPO4 Wako 160-04292 AF-6 medium
KH2PO4 Wako 167-04241 AF-6 medium
MgSO4·7H2O Wako 137-00402 AF-6 medium
MnCl3·4H2O Wako 139-00722 AF-6 medium
Na2EDTA Wako 343-01861 AF-6 medium
Na2MoO4 Wako 196-02472 AF-6 medium
NaNO3 Wako 191-02542 AF-6 medium
NH4NO3 Wako 015-03231 AF-6 medium
Plankton Counter Matsunami Glass, Osaka, Japan S6300
Pylex test tube CTG Ltd., West Molesey, UK With rim, 16 x 100 mm
Vit. B1 Wako 203-00851 AF-6 medium
Vit. B12 Wako 226-00343 AF-6 medium
Vit. B6 Wako 165-05401 AF-6 medium
ZnSO4·7H2O Wako 264-00402 AF-6 medium

References

  1. Kolber, Z., Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography. 38 (8), 1646-1665 (1993).
  2. Kolber, Z. S., Prášil, O., Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1367 (1), 88-106 (1998).
  3. Oxborough, K., Moore, C. M., Suggett, D. J., Lawson, T., Chan, H. G., Geider, R. J. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnology and Oceanography: Methods. 10 (3), 142-154 (2012).
  4. Smyth, T. J., Pemberton, K. L., Aiken, J., Geider, R. J. A methodology to determine primary production and phytoplankton photosynthetic parameters from fast repetition rate fluorometry. Journal of Plankton Research. 26 (11), 1337-1350 (2004).
  5. Lawrenz, E., et al. Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE. 8 (3), 58137 (2013).
  6. Zhu, Y., et al. Relationship between light, community composition and the electron requirement for carbon fixation in natural phytoplankton. Marine Ecology Progress Series. 580, 83-100 (2017).
  7. Schuback, N., Tortell, P. D. Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments. Biogeosciences. 16 (7), 1381-1399 (2019).
  8. Cosgrove, J., Borowitzka, M. A. Chlorophyll fluorescence terminology: an introduction. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. , 1-17 (2010).
  9. McKew, B. A., et al. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytologist. 200 (1), 74-85 (2013).
  10. Warner, M. E., Lesser, M. P., Ralph, P. J. Chlorophyll fluorescence in reef building corals. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. , 209-222 (2010).
  11. Bhagooli, R., et al. Chlorophyll fluorescence – A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Marine Pollution Bulletin. 165, 112059 (2021).
  12. Zavafer, A., Labeeuw, L., Mancilla, C. Global trends of usage of chlorophyll fluorescence and projections for the next decade. Plant Phenomics. 2020, 6293145 (2020).
  13. Goto, N., Tanaka, Y., Mitamura, O. Relationships between carbon flow through freshwater phytoplankton and environmental factors in Lake Biwa, Japan. Fundamental and Applied Limnology/Archiv für Hydrobiologie. 184 (4), 261-275 (2014).
  14. Napoléon, C., Raimbault, V., Claquin, P. Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. PLOS ONE. 8 (6), 66423 (2013).
  15. Morris, E. P., Kromkamp, J. C. Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). European Journal of Phycology. 38 (2), 133-142 (2003).
  16. Fraga, S., Rodríguez, F., Bravo, I., Zapata, M., Marañón, E. Review of the main ecological features affecting benthic dinoflagellate blooms. Cryptogamie, Algologie. 33 (2), 171-179 (2012).
  17. McMinn, A., et al. Quantum yield of the marine benthic microflora of near-shore coastal Penang, Malaysia. Marine and Freshwater Research. 56 (7), 1047-1053 (2005).
  18. Salleh, S., McMinn, A. The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora cf. coffeaeformis and Cocconeis cf. sublittoralis (Bacillariophyceae). Journal of Phycology. 47 (6), 1413-1424 (2011).
  19. McMinn, A., Pankowskii, A., Ashworth, C., Bhagooli, R., Ralph, P., Ryan, K. In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities. Marine Biology. 157 (6), 1345-1356 (2010).
  20. Garbary, D. J., Bird, C. J., Kim, K. Y. Sporocladopsis jackii, sp. nov. (Chroolepidaceae, chlorophyta): a new species from eastern Canada and Maine symbiotic with the mud snail, Ilyanassa obsoleta (Gastropoda). Rhodora. 107 (929), 52-68 (2005).
  21. Suggett, D. J., Oxborough, K., Baker, N. R., MacIntyre, H. L., Kana, T. M., Geider, R. J. Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. European Journal of Phycology. 38 (4), 371-384 (2003).
  22. Hughes, D. J., et al. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. Limnology and Oceanography. 63 (5), 1891-1910 (2018).
  23. Melrose, D. C., Oviatt, C. A., O’Reilly, J. E., Berman, M. S. Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptake by phytoplankton. Marine Ecology Progress Series. 311, 37-46 (2006).
  24. Yoshida, K., Seger, A., Kennedy, F., McMinn, A., Suzuki, K. Freezing, melting, and light stress on the photophysiology of ice algae: ex situ incubation of the ice algal diatom Fragilariopsis cylindrus (Bacillariophyceae) using an ice tank. Journal of Phycology. 56 (5), 1323-1338 (2020).
  25. Selz, V., et al. Ice algal communities in the Chukchi and Beaufort Seas in spring and early summer: composition, distribution, and coupling with phytoplankton assemblages. Limnology and Oceanography. 63 (3), 1109-1133 (2018).
  26. Falasco, E., Bo, T., Ghia, D., Gruppuso, L., Bona, F., Fenoglio, S. Diatoms prefer strangers: non-indigenous crayfish host completely different epizoic algal diatom communities from sympatric native species. Biological Invasions. 20 (10), 2767-2776 (2018).
  27. Møhlenberg, F., Kaas, H. Colacium vesiculosum Ehrenberg (Euglenophyceae), infestation of planktonic copepods in the Western Baltic. Ophelia. 31 (2), 125-132 (1990).
  28. Zalocar, Y., Frutos, S. M., Casco, S. L., Forastier, M. E., Vallejos, S. V. Prevalence of Colacium vesiculosum (Colaciales: Euglenophyceae) on planktonic crustaceans in a subtropical shallow lake of Argentina. Revista De Biologia Tropical. 59 (3), 1295-1306 (2011).
  29. Barea-Arco, J., Pérez-Martínez, C., Morales-Baquero, R. Evidence of a mutualistic relationship between an algal epibiont and its host, Daphnia pulicaria. Limnology and Oceanography. 46 (4), 871-881 (2001).
  30. Decaestecker, E., Declerck, S., De Meester, L., Ebert, D. Ecological implications of parasites in natural Daphnia populations. Oecologia. 144 (3), 382-390 (2005).
  31. Allen, Y. C., Stasio, B. T. D., Ramcharan, C. W. Individual and population level consequences of an algal epibiont on Daphnia. Limnology and Oceanography. 38 (3), 592-601 (1993).
  32. Willey, R. L., Cantrell, P. A., Threlkeld, S. T. Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnology and Oceanography. 35 (4), 952-959 (1990).
  33. Green, J. Parasites and epibionts of Cladocera. The Transactions of the Zoological Society of London. 32 (6), 417-515 (1974).
  34. Evans, M. S., Sicko-Goad, L. M., Omair, M. Seasonal occurrence of Tokophrya quadripartita (Suctoria) as epibionts on adult Limnocalanus macrurus (Copepoda: Calanoida) in southeastern Lake Michigan. Transactions of the American Microscopical Society. 98 (1), 102-109 (1979).
  35. Chiavelli, D. A., Mills, E. L., Threlkeld, S. T. Host preference, seasonality, and community interactions of zooplankton epibionts. Limnology and Oceanography. 38 (3), 574-583 (1993).
  36. Willey, R. L., Willey, R. B., Threlkeld, S. T. Planktivore effects on zooplankton epibiont communities: epibiont pigmentation effects. Limnology and Oceanography. 38 (8), 1818-1822 (1993).
  37. Rosowski, J. R., Willey, R. L. Colacium libellae sp. nov. (euglenophyceae), a photosynthetic inhabitant of the larval damselfly rectum. Journal of Phycology. 11 (3), 310-315 (1975).
  38. Willey, R. L., Threlkeld, S. T. Organization of crustacean epizoan communities in a chain of subalpine ponds. Limnology and Oceanography. 38 (3), 623-627 (1993).
  39. Al-Dhaheri, R. S., Willey, R. L. Colonization and reproduction of the epibiotic flagellate Colacium vesiculosum (euglenophyceae) on Daphnia pulex. Journal of Phycology. 32 (5), 770-774 (1996).
  40. Rosowski, J. R. Photosynthetic euglenoids. Freshwater Algae of North America. , 383-422 (2003).
  41. Rosowski, J. R., Kugrens, P. Observations on the euglenoid Colacium with special reference to the formation and morphology of attachment material. Journal of Phycology. 9 (4), 370-383 (1973).
  42. Salmaso, N., Tolotti, M. Other phytoflagellates and groups of lesser importance. Encyclopedia of Inland Waters. , 174-183 (2009).
  43. Threlkeld, S. T., Chiavelli, D. A., Willey, R. L. The organization of zooplankton epibiont communities. Trends in Ecology & Evolution. 8 (9), 317-321 (1993).
  44. Bertolo, A., Rodríguez, M. A., Lacroix, G. Control mechanisms of photosynthetic epibionts on zooplankton: an experimental approach. Ecosphere. 6 (11), (2015).
  45. Pringsheim, E. G. Notiz über Colacium (Euglenaceae). Österreichische Botanische Zeitschrift. 100 (3), 270-275 (1953).
  46. Wołowski, K., Duangjan, K., Peerapornpisal, Y. Colacium minimum (Euglenophyta), a new epiphytic species for Asia. Polish Botanical Journal. 60 (2), 179-185 (2015).
  47. Martin, J. H., Knauer, G. A. The elemental composition of plankton. Geochimica et Cosmochimica Acta. 37 (7), 1639-1653 (1973).
  48. Kazama, T., Hayakawa, K., Kuwahara, V. S., Shimotori, K., Imai, A., Komatsu, K. Development of photosynthetic carbon fixation model using multi-excitation wavelength fast repetition rate fluorometry in Lake Biwa. PLOS ONE. 16 (2), 0238013 (2021).
  49. Chesney, T., Sastri, A. R., Beisner, B. E., Nandini, S., Sarma, S. S. S., Juneau, P. Application of fluorometry (Phyto-PAM) for assessing food selection by cladocerans. Hydrobiologia. 829 (1), 133-142 (2019).
  50. Wang, Q., Yang, S., Wan, S., Li, X. The significance of calcium in photosynthesis. International Journal of Molecular Sciences. 20 (6), 1353 (2019).
  51. Dau, H., Haumann, M. Eight steps preceding O-O bond formation in oxygenic photosynthesis-A basic reaction cycle of the photosystem II manganese complex. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1767 (6), 472-483 (2007).
  52. Suthers, I., Bowling, L., Kobayashi, T., Rissik, D. . Sampling methods for plankton. Plankton: A guide to their ecology and monitoring for water quality. , 63-90 (2019).
  53. Błędzki, L. A., Rybak, J. I. . Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. , (2016).
  54. Kato, S. Laboratory culture and morphology of Colacium vesiculosum Ehrb. (Euglenophyceae). Japanese Journal of Phycology (Sorui). 30, 63-67 (1982).
  55. Serôdio, J., Campbell, D. A. Photoinhibition in optically thick samples: Effects of light attenuation on chlorophyll fluorescence-based parameters. Journal of Theoretical Biology. 513, 110580 (2021).
  56. Sylvan, J. B., Quigg, A., Tozzi, S., Ammerman, J. W. Eutrophication-induced phosphorus limitation in the Mississippi River plume: evidence from fast repetition rate fluorometry. Limnology and Oceanography. 52 (6), 2679-2685 (2007).
  57. Browning, T. J., et al. P. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnology and Oceanography. 65 (6), 1136-1148 (2020).
  58. Pausch, F., Bischof, K., Trimborn, S. Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLOS ONE. 14 (9), 0221959 (2019).
  59. Ferroni, L., Baldisserotto, C., Fasulo, M. P., Pagnoni, A., Pancaldi, S. Adaptive modifications of the photosynthetic apparatus in Euglena gracilis Klebs exposed to manganese excess. Protoplasma. 224 (3), 167-177 (2004).
  60. Gaiser, E. E., Bachmann, R. W. Seasonality, substrate pereference and attachment sites of epizoic diatoms on cladoceran zooplankton. Journal of Plankton Research. 16 (1), 53-68 (1994).
  61. Totti, C., et al. The diversity of epizoic diatoms: relationships between diatoms and marine invertebrates. The Diversity of Epizoic Diatoms. 16, 323-343 (2011).
  62. Perkins, M., Effler, S. W., Strait, C. M. Phytoplankton absorption and the chlorophyll a-specific absorption coefficient in dynamic Onondaga Lake. Inland Waters. 4 (2), 133-146 (2014).
  63. Kromkamp, J., Capuzzo, E., Philippart, C. J. M. Measuring phytoplankton primary production: review of existing methodologies and suggestions for a common approach. EcApRHA Deliverable WP 3.2. 28, (2017).
  64. Hughes, D., et al. Roadmaps and detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environmental Science & Technology. 52 (21), 12039-12054 (2018).
  65. Perkins, R. G., et al. . The application of variable chlorophyll fluorescence to microphytobenthic biofilms. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. 4, 237-275 (2010).
  66. Schuback, N., Flecken, M., Maldonado, M. T., Tortell, P. D. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific. Biogeosciences. 13 (4), 1019-1035 (2016).
  67. Schreiber, U., Gademann, R., Ralph, P. J., Larkum, A. W. D. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant and Cell Physiology. 38 (8), 945-951 (1997).
  68. Garbary, D. J., Miller, A. G., Scrosati, R. A. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone. Algae. 29 (4), 321-331 (2014).
  69. Gorbunov, M. Y., Kolber, Z. S., Lesser, M. P., Falkowski, P. G. Photosynthesis and photoprotection in symbiotic corals. Limnology and Oceanography. 46 (1), 75-85 (2001).
  70. Yellowlees, D., Warner, M. Photosynthesis in symbiotic algae. Photosynthesis in Algae. 14, 437-455 (2003).
  71. Wojtasiewicz, B., Stoń-Egiert, J. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystems. Journal of Applied Phycology. 28 (4), 2299-2314 (2016).
  72. Aardema, H. M., Rijkeboer, M., Lefebvre, A., Veen, A., Kromkamp, J. C. High-resolution underway measurements of phytoplankton photosynthesis and abundance as an innovative addition to water quality monitoring programs. Ocean Science. 15 (5), 1267-1285 (2019).
check_url/63108?article_type=t

Play Video

Cite This Article
Kazama, T., Hayakawa, K., Shimotori, K., Imai, A. Measuring Photophysiology of Attached Stage of Colacium sp. by a Cuvette-Type Fast Repetition Rate Fluorometer. J. Vis. Exp. (177), e63108, doi:10.3791/63108 (2021).

View Video