Summary

Primary Cell Cultures to Study the Regeneration Potential of Murine Müller Glia after MicroRNA Treatment

Published: March 28, 2022
doi:

Summary

Müller glia primary cultures obtained from mouse retinas represent a very robust and reliable tool to study the glial conversion into retinal progenitor cells after microRNA treatment. Single molecules or combinations can be tested before their subsequent application of in vivo approaches.

Abstract

Müller glia (MG) are the predominant glia in the neural retina and can function as a regenerative source for retinal neurons. In lower vertebrates such as fish, MG-driven regeneration occurs naturally; in mammals, however, stimulation with certain factors or genetic/epigenetic manipulation is required. Since MG comprise only 5% of the retinal cell population, there is a need for model systems that allow the study of this cell population exclusively. One of these model systems is primary MG cultures that are reproducible and can be used for a variety of applications, including molecule/factor screening and identification, testing of compounds or factors, cell monitoring, and/or functional tests. This model is used to study the potential of murine MG to convert into retinal neurons after supplementation or inhibition of microRNAs (miRNAs) via transfection of artificial miRNAs or their inhibitors. The use of MG-specific reporter mice in combination with immunofluorescent labeling and single-cell RNA sequencing (scRNA-seq) confirmed that 80%-90% of the cells found in these cultures are MG. Using this model, it was discovered that miRNAs can reprogram MG into retinal progenitor cells (RPCs), which subsequently differentiate into neuronal-like cells. The advantages of this technique are that miRNA candidates can be tested for their efficiency and outcome before their usage in in vivo applications.

Introduction

The Müller glia (MG) are the predominant glia in the neural retina. They have similar functions compared to other glia in other parts of the central nervous system such as maintaining the water and ion homeostasis, nourishing neurons, and protecting the tissue. MG have another fascinating feature: although they are mature glia, they still express many genes expressed in retinal progenitor cells (RPCs) during late development1,2. This resemblance is assumed to be the reason for the naturally occurring MG-based neuronal regeneration in the fish retina after retinal damage3,4. During this process, MG re-enter the cell cycle and de-differentiate into RPCs that then differentiate into all six types of retinal neurons. Although this phenomenon occurs naturally in fish, mammalian MG do not convert into neurons5,6. They can, however, be reprogrammed. A variety of factors have been shown to reprogram MG into RPCs/neurons; among these factors is the basic helix-loop-helix (bHLH) transcription factor achaete-scute homolog 1 (Ascl1) that is involved in fish regeneration7,8. In mice, Ascl1 is only expressed in RPCs during retinogenesis but is absent in mature MG or retinal neurons9.

Reprogramming cells directly in vivo is not only methodologically challenging but also requires approval from an institutional animal care and use committee. To receive approval, preliminary data about the factor(s) used or altered, concentrations, off-target effects, underlying mechanisms, toxicity, and efficiency are required. Cell culture systems allow testing for these criteria before usage in in vivo models. Moreover, since MG only comprise about 5% of the entire retinal cell population10, MG cultures allow the study of their function11 as well their behavior, including migration12,13, proliferation14, stress reaction to injury/damage15,16, their interaction with other cell types such as microglia17 or retinal ganglion cells (RGCs)18, or their neurogenic potential19,20,21. Many researchers use immortalized cell lines for their studies since they have an unlimited proliferative potential and can be easily maintained and transfected. Primary cells, however, are preferable for biologically relevant assays than immortalized cells since they have true cell characteristics (gene and protein expression) and, more importantly, they represent a certain stage in development and therefore have an "age". The age of an animal (and consequently of the cells obtained from an animal) is an especially crucial factor in cellular reprogramming since cell plasticity reduces with progressed stage of development22.

This protocol describes in detail how to reprogram primary MG with miRNAs as a current in vitro method for studying regeneration. This MG primary culture model was established in 2012 to evaluate cell proliferation characteristics of MG in P53 knock-out mice (trp53-/- mice)23. It was shown that cultured MG maintain their glial features (i.e., expression of S100β, Pax6, and Sox2 proteins evaluated via immunofluorescent labeling), and that they resemble in vivo MG (microarray of FACS-purified MG)23. Shortly thereafter, glial mRNA and protein expression were validated and confirmed in a different approach using viral vectors20. A few years later, it was confirmed that the vast majority of cells found in these cultures are MG by using the MG-specific Rlbp1CreERT:tdTomatoSTOPfl/fl reporter mouse24. Moreover, quantification of the set of miRNAs in both FACS-purified MG and cultured primary MG showed that the levels of MG miRNAs (mGLiomiRs) do not vary much in cultured MG during the growth phase. Elongated culture periods, however, cause changes in miRNA levels and consequently in mRNA levels and protein expression since miRNAs are translational regulators25.

In 2013, this MG culture model was used to test a variety of transcription factors with respect to their capability to reprogram MG into retinal neurons20. Ascl1 was found to be a very robust and reliable reprogramming factor. Overexpression of Ascl1 via viral vectors induced morphological changes, expression of neuronal markers, and the acquisition of neuronal electrophysiological properties. More importantly, the insights and results obtained from these first in vitro experiments were successfully transferred to in vivo applications22,26 demonstrating that primary MG cultures represent a solid and reliable tool for initial factor screenings and evaluation of glial features prior to in vivo implementation.

A few years ago, it was shown that the brain-enriched miRNA miR-124, which is also highly expressed in retinal neurons, can induce Ascl1 expression in cultured MG21. Ascl1 expression in living cells was visualized via an Ascl1 reporter mouse (Ascl1CreERT:tdTomatoSTOPfl/fl). A reporter mouse is a genetically engineered mouse that has a reporter gene inserted in its DNA. This reporter gene encodes for a reporter protein, which is in this study tdTomato, a red fluorescent protein. This reporter protein reports the expression of a gene of interest, in this case, Ascl1. In other words, cells that express Ascl1 will turn red. Since Ascl1 is only expressed in RPCs9, this Ascl1CreERT:tdTomatoSTOPfl/fl mouse allows tracking of MG conversion into Ascl1 expressing RPCs, meaning converting cells will express red fluorescent tdTomato reporter protein. This is irreversible labeling since the DNA of these cells is altered. Consequently, any subsequent neuronal differentiation will be visualized because the tdTomato label remains in differentiating cells. If Ascl1 expressing MG-derived RPCs (with tdTomato label) differentiate into neurons, these neurons will still have their red label. This mouse, therefore, allows not only the labeling of MG-derived RPCs for live-cell imaging but also allows fate mapping and lineage tracing of these MG-derived (red) RPCs. More recently, the set of miRNAs in RPCs was identified and MG cultures of Ascl1CreERT:tdTomatoSTOPfl/fl RPC-reporter mice were used to screen and test the effect of these miRNAs on reprogramming capacity and efficiency27. One candidate, the RPC-miRNA miR-25, was found capable of reprogramming cultured MG into Ascl1 expressing (Ascl1-Tomato+) cells. These reprogrammed cells adopt neuronal features over time, including neuronal morphology (small somata and either short or long fine processes), expression of neuronal transcripts measured via scRNA-Seq, as well as expression of neuronal proteins validated via immunofluorescent labeling27.

Here, the protocol details how to grow and transfect MG from P12 mice adapted from the previous work21,24,27. Chosen for this protocol is the aforementioned miRNA miR-25, a miRNA highly expressed in RPCs, with low expression levels in MG or retinal neurons. In order to overexpress miR-25, murine miR-25 mimics, i.e., artificial miRNA molecules are used. As a control, mimics of a miRNA from Caenorhabditis elegans are chosen, that have no function in mammalian cells. Visualization of the conversion of MG into RPCs was accomplished via the RPC reporter mouse (Ascl1CreERT:tdTomatoSTOPfl/fl), a mouse with mixed background (C57BL/6, S129, and ICR strains). This culture can, however, be performed with all mouse strains, including wild-type strains. In the past few years, the original protocol has been modified to reduce growth phase duration and the overall culture period and ensure a more robust glia cell status and minimize the degree of cellular degeneration, which occurs in prolonged culture periods. The regular transfection time window was also extended from 3 h to 2 days. As mentioned before, although the current protocol describes MG cultures as a tool for regeneration studies, the method is not only useful for testing reprogramming factors, but can also be adapted for other applications, including studies about MG migratory or proliferative behavior, injury/cell damage related paradigms, and/or the identification of underlying mechanisms and pathways.

Protocol

Procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at SUNY College of Optometry. NOTE: This culture protocol consists of three phases: growth, transfection, and conversion phase. A summary of the overall protocol with the timeline is given in Figure 1. 1. Preparation of media and all required reagents NOTE: All steps need to be car…

Representative Results

This protocol describes how to grow MG from P12 mouse retinas and how to reprogram these cells with miR-25 into retinal neurons using the Ascl1CreERT:tdTomatoSTOPfl/fl RPC reporter mouse. This method was used in previous work reporting in detail other suitable miRNAs (mimics or inhibitors, as single molecules or in combination) to reprogram MG into RPC that then adopt neuronal cell characteristics27. This method has been modified to grow cultures faster and thus mini…

Discussion

This protocol describes how to grow MG from dissociated mouse retinas for reprogramming studies using miRNAs. As shown and confirmed in a variety of previous studies, the vast majority (80%-90%) of cells found in these cultures are MG20,23,24. This method is a very robust and reliable technique and results can be easily reproduced if the protocol is followed correctly21,27</su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Dr. Ann Beaton and all lab members for their input on the manuscript. Special thanks go to Drs. Tom Reh, Julia Pollak, and Russ Taylor for introducing MG primary cultures as a screening tool to S.G.W. during postdoctoral training at the University of Washington in Seattle. The study was funded by the Empire Innovation Program (EIP) Grant to S.G.W. and start-up funds from SUNY Optometry to S.G.W., as well as the R01EY032532 award from the National Eye Institute (NEI) to S.G.W.

Materials

Animals
Ascl1-CreERT mouse Ascl1tm1.1(Cre/ERT2)Jejo/J Jax laboratories #012882 Ascl1-CreERT mice were crossed with tdTomato mice
tdTomato-STOPfl/fl mouse  B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J Jax laboratories #007914 Genotyping is requried to identify Ascl1CreER positive mice
Reagents
(Z)-4-Hydroxytamoxifen, ≥98% Z isomer Sigma-Aldrich H7904-5MG reconstituted in ethanol, frozen aliquots
16 % Paraformaldehyde (PFA) aqueous solution VWR 100504-782 2% PFA made with Phosphate-buffered saline (PBS), frozen aliquots
Alexa Fluor 488 – AffiniPure F(ab')2 Fragment Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoResearch Laboratories 711-546-152 dilution 1:500
Alexa Fluor 647 – AffiniPure F(ab')2 Fragment Donkey Anti-Goat IgG (H+L) Jackson ImmunoResearch Laboratories 705-606-147 dilution 1:500
Anti-human Otx2 Antibody, R&D Systems Fisher Scientific AF1979 dilution 1:500
Anti-rabbit MAP2 antibody Sigma-Aldrich M9942-200UL dilution 1:250
Anti-Red Fluorescent Protein (RFP) antibody Antibodies-Online ABIN334653 dilution 1:500
Ascorbic Acid STEMCELL Technologies 72132 reconstituted in PBS, frozen aliquots
B-27 Supplement Fisher Scientific 17-504-044 frozen aliquots
Brain Phys Neuronal Medium STEMCELL Technologies 05790 used as neuronal medium in section 1.2, store at 4 °C (https://cdn.stemcell.com/media/files/pis/10000000225-PIS_02.pdf?_ga=2.153046205.562651831.
1643231638-1407032920.163831
5521&_gac=1.124727416.1643
231640.Cj0KCQiA_8OPBhDtAR
IsAKQu0gbfxhGZMTOU9mHFY
dHNsuLirnQzunvMEuS9wA08uY
-26yfSbGvNhHEaArodEALw_wcB)
Click-iT EdU Alexa Fluor 647 Imaging Kit Fisher Scientific C10340 reconstitute following manual, 4°C
Dibutyryl-cAMP STEMCELL Technologies 73886 reconstituted in Dimethyl sulfoxide (DMSO), frozen aliquots
Dimethyl Sulfoxide (DMSO) Fisher Scientific MT-25950CQC
Fetal Bovine Serum (FBS) Fisher Scientific MT35010CV frozen aliquots
Gibco Opti-MEM Reduced Serum Medium, GlutaMAX Supplement Fisher Scientific 51-985-034 store at 4 °C
Gibco TrypLE Express Enzyme (1X), phenol red Fisher Scientific 12-605-028 used as solution containing trypsin, store at 4 °C
HBSS Fisher Scientific 14-025-134 store at 4 °C
Laminin mouse protein, natural Fisher Scientific 23-017-015

frozen aliquots, (https://cdn.stemcell.com/media/files/pis/10000000225-PIS_02.pdf?_ga=2.153046205.562651831.
1643231638-1407032920.163831
5521&_gac=1.124727416.164323
1640.Cj0KCQiA_8OPBhDtARIsA
KQu0gbfxhGZMTOU9mHFYdHN
suLirnQzunvMEuS9wA08uY-
26yfSbGvNhHEaArodEALw_wcB)

L-Glutamine Fisher Scientific 25-030-081 frozen aliquots
miRIDIAN microRNA Mimic Negative Control Horizon CN-001000-01-50 reconstituted in RNase free water (200 µM), frozen aliquots
miRIDIAN microRNA Mouse mmu-miR-25-3p mimic Horizon C-310564-05-0050 reconstituted in RNase free water (200 µM), frozen aliquots
N-2 Supplement Fisher Scientific 17-502-048 frozen aliquots
Neurobasal Medium Fisher Scientific 21-103-049 used for growth medium in section 1.1, store at 4 °C
Papain Dissociation System Worthington Biochemical LK003153 reconstituted in Earle's Balanced Salt Solution, frozen aliquots
Penicillin Streptomycin Fisher Scientific 15-140-122 frozen aliquots
Phosphate-buffered saline (PBS) Fisher Scientific 20-012-043
Poly-L-ornithine hydrobromide Sigma-Aldrich P4538-50MG reconstituted in steriled water, frozen aliquots
Recombinant Human BDNF Protein R&D Systems 248-BDB-050/CF reconstituted in steriled PBS and FBS, frozen aliquots
Recombinant Mouse EGF Protein Fisher Scientific 2028EG200 reconstituted in steriled PBS, frozen aliquots
Recombinant Rat GDNF Protein Fisher Scientific 512GF010 reconstituted in steriled PBS, frozen aliquots
Rhodamine Red 570 – AffiniPure F(ab')2 Fragment Donkey Anti-Rat IgG (H+L) Jackson ImmunoResearch Laboratories 712-296-150 dilution 1:1,000
Slide Mounting Medium Fisher Scientific OB100-01
Transfection Reagent (Lipofectamine 3000) Fisher Scientific L3000015 store at 4 °C
plasticware/supplies
0.6 mL microcentrifuge tube Fisher Scientific 50-408-120
1.5 mL microcentrifuge tube Fisher Scientific 50-408-129
10 µL TIP  sterile filter  Pipette Tips Fisher Scientific 02-707-439
100 µL TIP  sterile filter Pipette Tips Fisher Scientific 02-707-431
1000 µL TIP sterile filter Pipette Tips Fisher Scientific 02-707-404
2.0 mL microcentrifuge tube Fisher Scientific 50-408-138
20 µL TIP  sterile filter Pipette Tips Fisher Scientific 02-707-432
Adjustable-Volume Pipettes (2.5, 10, 20, 100, 200, & 1000 µL) Eppendorf 2231300008
Disposable Transfer Pipets Fisher Scientific 13-669-12
Multiwell Flat-Bottom Plates with Lids, No. of Wells=12 Fisher Scientific 08-772-29
Multiwell Flat-Bottom Plates with Lids, No. of Wells=24 Fisher Scientific 08-772-1
PIPET  sterile filter 10ML Disposable Serological Pipets Fisher Scientific 13-676-10J
PIPET  sterile filter 50ML Disposable Serological Pipets Fisher Scientific 13-676-10Q
PIPET  sterile filter 5ML Disposable Serological Pipets Fisher Scientific 13-676-10H
Powder-Free Nitrile Exam Gloves Fisher Scientific 19-130-1597B
Round coverslips (12 mm diameter, 0.17 – 0.25 mm thickness) Fisher Scientific 22293232
Vacuum Filter, Pore Size=0.22 µm Fisher Scientific 09-761-106
equipment
1300 B2 Biosafety cabinet Thermo Scientific 1310
All-in-one Fluorescence Microscope Keyence BZ-X 810 Keyence 9011800000
Binocular Zoom Stereo Microscope Vision Scientific VS-1EZ-IFR07
Disposable Petri Dishes (100 mm diameter) VWR 25384-088
Dumont #5 Forceps – Biologie/Titanium Fine Science Tools 11252-40
Dumont #55 Forceps – Biologie/Inox Fine Science Tools 11255-20
Dumont #7 curved Forceps – Biologie/Titanium Fine Science Tools 11272-40
Eppendorf Centrifuge 5430 R Eppendorf 2231000508
Fine Scissors-sharp Fine Science Tools 14058-11
McPherson-Vannas Scissors, 8 cm World Precision Instruments 14124
Metal bead bath Lab Armor 74309-714
Nutating Mixer, Electrical=115V, 60Hz, Speed=24 rpm VWR 82007-202
Silicone coated dissection Petri Dish (90 mm diameter) Living Systems Instrumentation DD-ECON-90-BLK-5PK
Tweezers, economy #5 World Precision Instruments 501979
Water Jacketed CO2 Incubator VWR 10810-744

References

  1. Jadhav, A. P., Roesch, K., Cepko, C. L. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Progress in Retinal and Eye Research. 28 (4), 249-262 (2009).
  2. Roesch, K., et al. The transcriptome of retinal Müller glial cells. The Journal of Comparative Neurology. 509 (2), 225-238 (2008).
  3. Goldman, D. Müller glial cell reprogramming and retina regeneration. Nature Reviews. Neuroscience. 15 (7), 431-442 (2014).
  4. Konar, G. J., Ferguson, C., Flickinger, Z., Kent, M. R., Patton, J. G. miRNAs and Muller Glia Reprogramming During Retina Regeneration. Frontiers in Cell and Developmental Biology. 8, 632632 (2020).
  5. Karl, M. O., Reh, T. A. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends in Molecular Medicine. 16 (4), 193-202 (2010).
  6. Wilken, M. S., Reh, T. A. Retinal regeneration in birds and mice. Current Opinion in Genetics and Development. 40, 57-64 (2016).
  7. Fausett, B. V., Gumerson, J. D., Goldman, D. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. The Journal of Neuroscience. 28 (5), 1109-1117 (2008).
  8. Ramachandran, R., Fausett, B. V., Goldman, D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature Cell Biology. 12 (11), 1101-1107 (2010).
  9. Brzezinski, J. A. t., Kim, E. J., Johnson, J. E., Reh, T. A. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development. 138 (16), 3519-3531 (2011).
  10. Jeon, C. J., Strettoi, E., Masland, R. H. The major cell populations of the mouse retina. The Journal of Neuroscience. 18 (21), 8936-8946 (1998).
  11. Del Rio, P., et al. GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6brd1 mouse model of retinal degeneration. Glia. 59 (5), 821-832 (2011).
  12. Pena, J., et al. Controlled microenvironments to evaluate chemotactic properties of cultured Muller glia. Experimental Eye Research. 173, 129-137 (2018).
  13. Pena, J. S., Vazquez, M. VEGF Upregulates EGFR expression to stimulate chemotactic behaviors in the rMC-1 model of Muller glia. Brain Sciences. 10 (6), 330 (2020).
  14. Ueki, Y., Reh, T. A. EGF stimulates Müller glial proliferation via a BMP-dependent mechanism. Glia. 61 (5), 778-789 (2013).
  15. Zhang, X., Feng, Z., Li, C., Zheng, Y. Morphological and migratory alterations in retinal Muller cells during early stages of hypoxia and oxidative stress. Neural Regeneration Research. 7 (1), 31-35 (2012).
  16. Sheline, C. T., Zhou, Y., Bai, S. Light-induced photoreceptor and RPE degeneration involve zinc toxicity and are attenuated by pyruvate, nicotinamide, or cyclic light. Molecular Vision. 16, 2639-2652 (2010).
  17. Wang, M., Ma, W., Zhao, L., Fariss, R. N., Wong, W. T. Adaptive Muller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. Journal of Neuroinflammation. 8, 173 (2011).
  18. Pereiro, X., Miltner, A. M., La Torre, A., Vecino, E. Effects of adult muller cells and their conditioned media on the survival of stem cell-derived retinal ganglion cells. Cells. 9 (8), 1759 (2020).
  19. Xia, X., Teotia, P., Patel, H., Van Hook, M. J., Ahmad, I. Chemical induction of neurogenic properties in mammalian Muller glia. Stem Cells. 39 (8), 1081-1090 (2021).
  20. Pollak, J., et al. ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development. 140 (12), 2619-2631 (2013).
  21. Wohl, S. G., Reh, T. A. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Muller glia. Glia. 64 (5), 743-762 (2016).
  22. Ueki, Y., et al. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proceedings of the National Academy of Sciences of the United States of America. 112 (44), 13717-13722 (2015).
  23. Ueki, Y., et al. P53 is required for the developmental restriction in Müller glial proliferation in mouse retina. Glia. 60 (10), 1579-1589 (2012).
  24. Wohl, S. G., Reh, T. A. The microRNA expression profile of mouse Muller glia in vivo and in vitro. Scientific Reports. 6, 35423 (2016).
  25. Zuzic, M., Rojo Arias, J. E., Wohl, S. G., Busskamp, V. Retinal miRNA functions in health and disease. Genes (Basel). 10 (5), 377 (2019).
  26. Jorstad, N. L., et al. Stimulation of functional neuronal regeneration from Muller glia in adult mice. Nature. 548 (7665), 103-107 (2017).
  27. Wohl, S. G., Hooper, M. J., Reh, T. A. MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of Muller glia in mice. Development. 146 (17), 179556 (2019).
  28. Hauck, S. M., Suppmann, S., Ueffing, M. Proteomic profiling of primary retinal Muller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia. 44 (3), 251-263 (2003).
  29. Merl, J., Ueffing, M., Hauck, S. M., von Toerne, C. Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Muller cells. Proteomics. 12 (12), 1902-1911 (2012).
  30. Buchsbaum, I. Y., et al. ECE2 regulates neurogenesis and neuronal migration during human cortical development. EMBO Reports. 21 (5), 48204 (2020).
  31. Eliscovich, C., Shenoy, S. M., Singer, R. H. Imaging mRNA and protein interactions within neurons. Proceedings of the National Academy of Sciences of the United States of America. 114 (10), 1875-1884 (2017).
  32. Wohl, S. G., Jorstad, N. L., Levine, E. M., Reh, T. A. Muller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nature Communications. 8 (1), 1603 (2017).
  33. Yamamoto, H., Kon, T., Omori, Y., Furukawa, T. Functional and evolutionary diversification of Otx2 and Crx in vertebrate retinal photoreceptor and bipolar cell development. Cell Reports. 30 (3), 658-671 (2020).
  34. Kaufman, M. L., et al. Initiation of Otx2 expression in the developing mouse retina requires a unique enhancer and either Ascl1 or Neurog2 activity. Development. 148 (12), (2021).
  35. Emerson, M. M., Cepko, C. L. Identification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors. Developmental Biology. 360 (1), 241-255 (2011).
  36. Ghinia Tegla, M. G., et al. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification. eLife. 9, 54279 (2020).
  37. Brzezinski, J. A. t., Lamba, D. A., Reh, T. A. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development. 137 (4), 619-629 (2010).
  38. Brzezinski, J. A. t., Uoon Park, K., Reh, T. A. Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Developmental Biology. 384 (2), 194-204 (2013).
  39. Kim, H. T., et al. Mitochondrial protection by exogenous Otx2 in mouse retinal neurons. Cell Reports. 13 (5), 990-1002 (2015).
  40. Nishida, A., et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nature Neuroscience. 6 (12), 1255-1263 (2003).
  41. Nelson, B. R., et al. Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One. 6 (8), 22817 (2011).
  42. VandenBosch, L. S., et al. Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Muller Glial regenerative potential. Scientific Reports. 10 (1), 13615 (2020).
  43. Clark, B. S., et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron. 102 (6), 1111-1126 (2019).
  44. Lewis, G. P., Fisher, S. K. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. International Review of Cytology. 230, 263-290 (2003).
  45. Luna, G., Lewis, G. P., Banna, C. D., Skalli, O., Fisher, S. K. Expression profiles of nestin and synemin in reactive astrocytes and Muller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Molecular Vision. 16, 2511-2523 (2010).
  46. Pogue, A. I., et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neuroscience Letters. 476 (1), 18-22 (2010).
  47. Wohl, S. G., Schmeer, C. W., Friese, T., Witte, O. W., Isenmann, S. In situ dividing and phagocytosing retinal microglia express nestin, vimentin, and NG2 in vivo. PLoS One. 6 (8), 22408 (2011).
  48. Takamori, Y., et al. Nestin-positive microglia in adult rat cerebral cortex. Brain Research. 1270, 10-18 (2009).
  49. Alliot, F., Rutin, J., Leenen, P. J., Pessac, B. Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. Journal of Neuroscience Research. 58 (3), 367-378 (1999).
  50. Dore-Duffy, P., Katychev, A., Wang, X., Van Buren, E. CNS microvascular pericytes exhibit multipotential stem cell activity. Journal of Cerebral Blood Flow and Metabolism. 26 (5), 613-624 (2006).
  51. Mokry, J., et al. Expression of intermediate filament nestin in blood vessels of neural and non-neural tissues. Acta Medica (Hradec Kralove). 51 (3), 173-179 (2008).
  52. Suzuki, S., Namiki, J., Shibata, S., Mastuzaki, Y., Okano, H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. The Journal of Histochemistry and Cytochemistry. 58 (8), 721-730 (2010).
  53. Wohl, S. G., Schmeer, C. W., Isenmann, S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Progress in Retinal and Eye Research. 31 (3), 213-242 (2012).
  54. Eberhardt, C., Amann, B., Stangassinger, M., Hauck, S. M., Deeg, C. A. Isolation, characterization and establishment of an equine retinal glial cell line: a prerequisite to investigate the physiological function of Muller cells in the retina. Journal of Animal Physiology and Animal Nutrition (Berlin). 96 (2), 260-269 (2012).
  55. Löffler, K., Schäfer, P., Völkner, M., Holdt, T., Karl, M. O. Age-dependent Müller glia neurogenic competence in the mouse retina). Glia. 63 (10), 1809-1824 (2015).
  56. Schafer, P., Karl, M. O. Prospective purification and characterization of Muller glia in the mouse retina regeneration assay. Glia. 65 (5), 828-847 (2017).
check_url/63651?article_type=t

Play Video

Cite This Article
Kang, S., Wohl, S. Primary Cell Cultures to Study the Regeneration Potential of Murine Müller Glia after MicroRNA Treatment. J. Vis. Exp. (181), e63651, doi:10.3791/63651 (2022).

View Video