Summary

一种小鼠腹膜透析导管放置的逆行植入方法

Published: July 20, 2022
doi:

Summary

本文描述了在小鼠模型中植入腹膜透析导管的程序的修改,以避免使用传统技术观察到的主要技术问题。

Abstract

小鼠模型用于探测腹膜透析(PD)的各个方面,例如腹膜炎症和纤维化。这些事件导致人类腹膜衰竭,由于其在管理终末期肾病(ESKD)患者方面具有深远的临床意义,因此仍然是一个紧张的研究领域。尽管PD及其相关并发症具有临床重要性,但目前的实验小鼠模型面临着影响模型性能的关键技术挑战。这些包括PD导管移位和扭结,通常需要更早移除导管。这些限制也推动了对更多动物完成研究的需求。针对这些缺点,本研究引入了技术改进和手术细微差别,以防止小鼠模型中常见的PD导管并发症。此外,这种改进的模型通过使用脂多糖注射诱导腹膜炎症和纤维化来验证。从本质上讲,本文描述了一种创建PD实验模型的改进方法。

Introduction

终末期肾病负担
慢性肾脏病(CKD)是一个全球性的健康问题1。目前的估计表明,全世界有超过8.5亿人患有肾脏疾病。肾脏病的患病率几乎是糖尿病患者人数(4.22亿)的两倍,是全世界癌症(4200万)或艾滋病毒/艾滋病患者(3670万)患病率的20倍以上2。大约七分之一的美国人患有CKD,每1,000名美国人中就有2名患有ESKD,需要肾移植或透析支持3。考虑到全球ESKD负担不断加重,优化透析技术至关重要3.

腹膜透析
在美国,PD 是一种治疗 ESKD 的未充分利用的方式。根据美国肾脏数据系统(USRDS)的数据,2020年PD患者患病率仅为11%45。与中心血液透析(HD)相比,PD具有几个优势,包括更好的生活质量,更少的诊所就诊次数以及减少医疗保险支出67。此外,PD是一种基于家庭的疗法,与严重感染(如菌血症和心内膜炎)的风险要低得多,这些感染通常与血液透析导管有关。此外,PD可以通过紧急启动方案快速启动,从而减少了使用留置血管导管开始透析的需求8。PD被认为是儿科ESKD人群的首选透析方法9

腹膜透析引起的腹膜损伤
PD需要将PD液(透析液)引入腹膜,随着时间的推移导致腹膜发炎和重塑。腹膜炎症会引发纤维化,最终导致膜超滤能力随着时间的推移而丧失。腹膜的保存是PD的一项重大挑战,进一步的研究对于确保从业者获得最佳临床实践至关重要。有完善的小鼠模型有助于进一步了解腹膜感染和炎症、溶质、水运输动力学和膜衰竭的病理生理机制;尽管如此,导管的技术问题通常会限制这些型号10

分析腹膜变化
在ESKD患者中,透析液传统上通过具有深而浅表袖带的Tenkhoff导管引入腹膜腔。患者可能会出现导管相关并发症,包括导管迁移、输液疼痛和透析液引流不良111213。已经为人类引入了两种主要类型的腹膜导管,盘绕或直管,以尽量减少这些并发症12。在原始导管上增加了一些修改,包括对传统双袖带导管的额外袖带,以延长PD导管的存活期11。插入技术根据几个因素而有所不同,通过防止在生存后添加导管迁移,包括资源的可用性和专业知识水平14

相比之下,与人腹膜导管相比,腹膜透析的小鼠模型在技术和目的上具有根本差异。例如,小鼠模型中的腹膜导管主要用于研究膜改变,较少用于双向引流功能。由于动物的处理,目前的技术存在潜在的端口移位和导管迁移。在传统的小鼠模型中,接入端口不固定在皮肤上。这一方面造成了一个不稳定的通道,在清醒的动物中可能会被移位,导致导管迁移。鉴于小鼠模型在腹膜研究中的重要性,必须创建有效的手术技术以生成可靠的模型。因此,我们着手优化PD导管放置的传统模型。重要的是要注意,导管本身会导致腹膜的组织病理学改变,因此,关于PD溶液在动物研究中的影响的任何结论都必须在PD导管作为异物的背景下解释151617

腹膜组织病理学
PD失败主要与纤维化和血管生成过多有关,导致渗透压浓度梯度丧失。此外,腹膜过滤能力可能受到腹膜炎的影响。此外,感染性腹膜炎是透析方式从腹膜透析转变为血液透析的明确原因。18.

Protocol

在这项研究中,使用了八只雌性C57BL / 6J小鼠,年龄为8-12周,平均体重为20g。将小鼠饲养在标准条件下,并 随意喂食食物和水。这项研究是在波士顿大学医学中心(AN-1549)机构动物护理和使用委员会(IACUC)的批准下进行的。此处描述的程序是在无菌条件下进行的。 1.在异氟醚室中麻醉小鼠,并皮下注射镇痛药 从尾巴根部握住动物。将动物保持在?…

Representative Results

直到研究结束,所有植入的导管都有效,导管移位或扭结不会使任何植入的导管复杂化。使用LPS的腹膜炎诱导模型进一步验证了当前改进的技术。对照小鼠接受200μL每日生理盐水注射,而实验小鼠在导管植入后总共7天注射200μLLPS,如方案步骤11中所述。 通过苏木精和伊红(H&E)以及Masson Trichrome染色评估腹膜的组织病理学特征。对H&E染色切片的分析显示腹膜下间隙中的细胞外?…

Discussion

描述了PD的三种小鼠模型。这包括腹膜表面的盲穿刺,开放永久性系统和封闭系统10。腹膜表面盲穿涉及类似于腹膜内注射的直接腹膜通路,但不允许透析液引流。作为一种盲法手术,这种方法会伤害腹部内脏器官。开放式永久性系统模型将透析导管和滴注口保持在体外。然而,这种技术在小鼠中与并发症有关,例如由于动物的运动,感染和无法进行长期实验而导致的袋子断开。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH 1R01HL132325和R21 DK119740-01(VCC)和AHA心脏肿瘤学SFRNCAT-HD中心资助857078(VCC和SL)的支持。

Materials

10% heparin  Canada Inc., Boucherville, QC, Canada) Pharmaceutical product
     Buprenorphine 0.3 mg/mL      PAR Pharmaceutical            NDC 42023-179-05
C57BL/6J mice The Jackson Lab IMSR_JAX:000664
CD31 Abcam Ab9498
            Clamp      Fine Science Tools                13002-10
            Forceps      Fine Science Tools                11002-12
Dumont #5SF Forceps Fine Science Tools 11252-00
Dumont Vessel Cannulation Forceps Fine Science Tools 11282-11
Fine Scissors – Large Loops Fine Science Tools 14040-10
Fisherbrand Animal Ear-Punch Fisher Scientific 13-812-201
Hill Hemostat Fine Science Tools 13111-12
Huber point needle  Access  technologies  PG25-500 Needle for injections
            Isoflurane, USP             Covetrus             NDC 11695-6777-2
       Lipopolysaccharide from E.coli             SIGMA               L4391
Microscope Nikon Eclipse Inverted Microscope TE2000
Minute Mouse Port 4French with retention beads and cross holes     Access  technologies         MMP-4S-061108A
 Posi-Grip Huber point needles 25 G x 1/2´´    Access  technologies                PG25-500
            Scissors      Fine Science Tools                14079-10
Vicryl Suture AD-Surgical #L-G330R24

References

  1. Saran, R., et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases. 75, 6-7 (2020).
  2. ESRD, U.S.R.D.S.M. 2017 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States, Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. USRD. , (2017).
  3. Center of Disease Control, U.S.D.o.H.a.H.S. Chronic Kidney Disease in the United States, 2019. CDC Publications and Resources. , (2019).
  4. Cho, Y., et al. Peritoneal dialysis use and practice patterns: An international survey study. American Journal of Kidney Diseases. 77 (3), 315-325 (2021).
  5. Xieyi, G., Xiaohong, T., Xiaofang, W., Zi, L. Urgent-start peritoneal dialysis in chronic kidney disease patients: A systematic review and meta-analysis compared with planned peritoneal dialysis and with urgent-start hemodialysis. Peritoneal Dialysis International. 41 (2), 179-193 (2021).
  6. Gokal, R., Figueras, M., Olle, A., Rovira, J., Badia, X. Outcomes in peritoneal dialysis and haemodialysis–a comparative assessment of survival and quality of life. Nephrology Dialysis Transplantation. 14, 24-30 (1999).
  7. Gardezi, A. I., Sequeira, A., Narayan, R. Going home: Access for home modalities. Advances in Chronic Kidney Disease. 27 (3), 253-262 (2020).
  8. van de Luijtgaarden, M. W., et al. Trends in dialysis modality choice and related patient survival in the ERA-EDTA Registry over a 20-year period. Nephrology Dialysis Transplantation. 31 (1), 120-128 (2016).
  9. Schaefer, F., Warady, B. A. Peritoneal dialysis in children with end-stage renal disease. Nature Reviews. Nephrology. 7 (11), 659-668 (2011).
  10. Gonzalez-Mateo, G. T., Pascual-Anton, L., Sandoval, P., Aguilera Peralta, A., Lopez-Cabrera, M. Surgical techniques for catheter placement and 5/6 nephrectomy in murine Models of Peritoneal Dialysis. Journal of Visualized Experiments: JoVE. (137), e56746 (2018).
  11. Chow, K. M., et al. Straight versus coiled peritoneal dialysis catheters: A randomized controlled trial. American Journal of Kidney Diseases. 75 (1), 39-44 (2020).
  12. LaPlant, M. B., et al. Peritoneal dialysis catheter placement, outcomes and complications. Pediatric Surgery International. 34 (11), 1239-1244 (2018).
  13. Al-Hwiesh, A. K. A modified peritoneal dialysis catheter with a new technique: Farewell to catheter migration. Saudi Journal of Kidney Diseases and Transplantation. 27 (2), 281-289 (2016).
  14. Crabtree, J. H., Chow, K. M. Peritoneal dialysis catheter insertion. Seminars Nephrology. 37 (1), 17-29 (2017).
  15. Flessner, M. F., et al. Peritoneal changes after exposure to sterile solutions by catheter. Journal of the American Society of Nephrology. 18 (8), 2294-2302 (2007).
  16. Kowalewska, P. M., Margetts, P. J., Fox-Robichaud, A. E. Peritoneal dialysis catheter increases leukocyte recruitment in the mouse parietal peritoneum microcirculation and causes Fibrosis. Peritonial Dialysis International: Journal of the International Society for Peritonial Dialysis. 36 (1), 7-15 (2016).
  17. Kowalewska, P. M., Patrick, A. L., Fox-Robichaud, A. E. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation. PLoS One. 9 (9), 104537 (2014).
  18. Yanez-Mo, M., et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. The New England Journal of Medicine. 348 (5), 403-413 (2003).
  19. Arinze, N. V., et al. Tryptophan metabolites suppress Wnt pathway and promote adverse limb events in CKD patients. The Journal of Clinical Investigation. 132 (1), (2021).
  20. Belghasem, M., et al. Metabolites in a mouse cancer model enhance venous thrombogenicity through the aryl hydrocarbon receptor-tissue factor axis. Blood. 134 (26), 2399-2413 (2019).
  21. Krediet, R. T. The peritoneal membrane in chronic peritoneal dialysis. Kidney International. 55 (1), 341-356 (1999).
  22. Gonzalez-Mateo, G. T., et al. Chronic exposure of mouse peritoneum to peritoneal dialysis fluid: structural and functional alterations of the peritoneal membrane. Peritonial Dialysis International: Journal of the International Society for Peritonial Dialysis. 29 (2), 227-230 (2009).
  23. Sukul, N., et al. Patient-reported advantages and disadvantages of peritoneal dialysis: results from the PDOPPS. BMC Nephrology. 20 (1), 116 (2019).
  24. Lu, Y., et al. A method for islet transplantation to the omentum in mouse. Journal of Visualized Experiments: JoVE. (143), e57160 (2019).
  25. Gotloib, L., Wajsbrot, V., Shostak, A. A short review of experimental peritoneal sclerosis: from mice to men. The International Journal of Artificial Organs. 28 (2), 97-104 (2005).
  26. Tateda, K., Matsumoto, T., Miyazaki, S., Yamaguchi, K. Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infection and Immunity. 64 (3), 769-774 (1996).
  27. Vila Cuenca, M., et al. Differences in peritoneal response after exposure to low-GDP bicarbonate/lactate-buffered dialysis solution compared to conventional dialysis solution in a uremic mouse model. International Urology and Nephrology. 50 (6), 1151-1161 (2018).
  28. Penar, J., et al. Selected indices of peritoneal fibrosis in patients undergoing peritoneal dialysis. Postepy Higieny Medycyny Doswiadczalnej (Online). 63, 200-204 (2009).
  29. Yung, S., Chan, T. M. Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators of Inflammation. 2012, 484167 (2012).
check_url/63689?article_type=t

Play Video

Cite This Article
Lotfollahzadeh, S., Zhang, M., Napoleon, M. A., Yin, W., Orrick, J., Elzind, N., Morrissey, A., Sellinger, I. E., Stern, L. D., Belghasem, M., Francis, J. M., Chitalia, V. C. A Retrograde Implantation Approach for Peritoneal Dialysis Catheter Placement in Mice. J. Vis. Exp. (185), e63689, doi:10.3791/63689 (2022).

View Video