Summary

Characterizing Salmonella Typhimurium-induced Septic Peritonitis in Mice

Published: July 29, 2022
doi:

Summary

This protocol describes the induction of Gram-negative monobacterial sepsis in a mouse model system. The model is useful in investigating the inflammatory and lethal host responses during sepsis.

Abstract

Sepsis is a dysregulated host immune response to microbial invasion or tissue damage, leading to organ injury at a site distant from that of the infection or damage. Currently, the widely used mice models of sepsis include lipopolysaccharide (LPS)-induced endotoxemia, cecal ligation and puncture (CLP), and monobacterial infection model systems. This protocol describes a method to study the host responses during Salmonella Typhimurium infection-induced septic peritonitis in mice. S. Typhimurium, a Gram-negative intracellular pathogen, causes typhoid-like disease in mice.

This protocol elaborates the culture preparation, induction of septic peritonitis in mice through intraperitoneal injection, and methods to study systemic host responses. Furthermore, the assessment of bacterial burden in different organs and the flow cytometric analysis of increased neutrophil numbers in the peritoneal lavage is presented. Salmonella Typhimurium-induced sepsis in mice leads to an increase in proinflammatory cytokines and rapid infiltration of neutrophils in the peritoneal cavity, leading to lower survival.

Every step in this protocol has been optimized, resulting in high reproducibility of the pathogenesis of septic peritonitis. This model is useful for studying immunological responses during bacterial sepsis, the roles of different genes in disease progression, and the effects of drugs to attenuate sepsis.

Introduction

Sepsis is defined as a dysregulated systemic inflammatory and immune response to microbial invasion or tissue damage, leading to organ injury distant from the site of infection or damage. Septic shock is a subset of sepsis characterized by hypotension persisting during volume resuscitation, with a substantially increased risk of mortality1. The general public has become more aware of this disorder during the COVID-19 pandemic. Despite its high associated mortality, comprehensive epidemiological data on the global burden of sepsis is lacking because of the complexity of its diagnosis. In 2017, there were 48.9 million sepsis incidences and 11 million deaths worldwide, accounting for 19.7% of all global deaths2. Further, a study on the extended prevalence of infection and related sepsis in intensive care unit patients found that 62% of the positive isolates from patients were Gram-negative organisms3.

Initially, the investigations on sepsis focused on delineating microbial pathogenesis. However, understanding the "danger hypothesis", which dictates how the host distinguishes self and non-self, led to the tilting of the balance of sepsis research toward understanding the host response to an invading pathogen. The widely used mice models of sepsis include the lipopolysaccharide (LPS)-induced endotoxemia model, polymicrobial sepsis models, cecal ligation and puncture (CLP) and colon ascendens stent peritonitis (CASP), and monobacterial infection models4.

We have standardized a mouse model system by inducing peritoneal sepsis using Salmonella Typhimurium. This model is advantageous over others because Salmonella Typhimurium is an intracellular pathogen that mimics the clinically relevant condition of Gram-negative sepsis. The outcome of peritonitis sepsis in this model is systemic, with 100% mortality within 96 h post infection. Therefore, this model is instrumental in studying the inflammatory and lethal host responses. In this model, sepsis is induced by intraperitoneally injecting 0.5 million colony-forming units (CFU) of Salmonella Typhimurium into an 8-10-week-old C57BL/6 mouse. Systemic infection can be confirmed by assessing organ bacterial burden ~16 h post infection. This article demonstrates Salmonella Typhimurium-induced peritonitis sepsis in mice, characterizes the resulting alterations in peritoneal cell composition, and quantifies bacterial burden in different organs.

Protocol

All experiments using Salmonella Typhimurium were conducted in Bio Safety Level 2 (BSL-2) facilities. Care must be taken to use proper personal protective equipment (PPE), ensure safety, and follow standard BSL-2 biohazard disposal methods. All mice experiments were conducted following guidelines stated by the Institutional Animal Ethics Committee, IISc. Mice were bred and maintained at the Central Animal Facility of IISc (Registration number: 48/1999/CPCSEA, dated 1/3/1999), approved by the Ministry of Environm…

Representative Results

A detailed characterization of the host immune response using this particular model is shown in previous publications8,9. A few representative results of the described protocol are depicted in this section. This model aims to induce systemic infection of S. Typhimurium by intraperitoneal injection of the bacterial culture to induce sepsis. To confirm the infection, the lysates of the liver and spleen from septic mice were spread on SS agar plates, and th…

Discussion

This article describes a method of inducing a severe form of bacterial sepsis by intraperitoneal injection of Salmonella Typhimurium. This model is advantageous over others as Salmonella Typhimurium is an intracellular pathogen and, hence, highly pathogenic, mimicking the clinically relevant condition of Gram-negative sepsis. The outcome of peritonitis sepsis in this model is systemic, with 100% mortality within 96 h post infection. Therefore, this model is instrumental in studying the inflammatory and …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the Central Animal Facility, IISc for supplying us with mice for research. This study was funded by grants to DpN from the Department of Biotechnology and Science and Engineering Research Board, Government of India. The infrastructural support from the DBT-IISc program and DST-FIST grants are greatly acknowledged. We thank all previous and current members of the DpN lab for their support.

Materials

Consumables
1 mL Sterile Syringe with 26 G needle Beckton Dickinson, Singapore 303060
1.5 mL Microcentrifuge Tube Tarsons, USA 500010
10 mL Sterile Syringe with 21 G needle Beckton Dickinson, Spain 307758
50 mL Conical Flask Tarsons, USA 441150
50 mL Graduated Centrifuge Tube Tarsons, USA 546041
50 mL Graduated Centrifuge Tube Tarsons, USA 546021
Cell spreader VWR, USA VWRU60828-680
Dulbecco’s Phosphate Buffered Saline HiMedia, Mumbai, India TS1006
Ethanol Merck 100983
FcR blocker BD Biosciences 553142
Fetal Bovine Serum Gibco 10270-106
FITC Rat anti-mouse Ly6G (Clone 1A8) BD Pharmingen 551460
Glycerol Sigma-Aldrich G9012
Hand based Homogenizer
Hemocytometer (Neubauer counting chamber) Rohem, India I.S. 10269
Luria Bertani Broth HiMedia, Mumbai, India M1245
Paraformaldehyde Sigma-Aldrich 158127
Petriplates Tarsons, USA 460091
RPMI Himedia, Mumbai, India AT060-10X1L
Salmonella-Shigella Agar HiMedia, Mumbai, India M108
Sodium azide Sigma-Aldrich S2002
Equipments
Centrifuge Kubota
Flow cytometer BD FACSverse
Incubator N-biotek
Spectrophotometer Shimadzu
Weighing machine Sartorius

References

  1. Hotchkiss, R. S., et al. Sepsis and septic shock. Nature Reviews Disease Primers. 2 (1), 1-21 (2016).
  2. Rudd, K. E., et al. regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet. 395 (10219), 200-211 (2020).
  3. Vincent, J. L., et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 302 (21), 2323-2329 (2009).
  4. Lewis, A. J., Seymour, C. W., Rosengart, M. R. Current murine models of sepsis. Surgical Infections. 17 (4), 385-393 (2016).
  5. Ta, L., Gosa, L., Nathanson, D. A. Biosafety and biohazards: Understanding biosafety levels and meeting safety requirements of a biobank. Biobanking. 1897, 213-225 (2019).
  6. Ray, A., Dittel, D. N. Isolation of Mouse Peritoneal Cavity Cells. Journal of Visualized Experiments: JoVE. (35), e1488 (2010).
  7. Liu, X., Quan, N. Immune cell isolation from mouse femur bone marrow. Bio-protocol. 5 (20), 1631 (2015).
  8. Yadav, S., et al. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radical Biology & Medicine. 116, 73-87 (2018).
  9. Verma, T., et al. Cell-free hemoglobin is a marker of systemic inflammation in mouse models of sepsis: A Raman spectroscopic study. Analyst. 146 (12), 4022-4032 (2021).
  10. Cassado, A. D. A., Lima, M. R. D., Bortoluci, K. R. Revisiting mouse peritoneal macrophages: Heterogeneity, development, and function. Frontiers in Immunology. 6, 225 (2015).
  11. Yadav, S., Verma, T., Chattopadhyay, A., Nandi, D. Factors affecting the pathophysiology of sepsis, an inflammatory disorder: Key roles of oxidative and nitrosative stress. Indian Journal of Inflammation Research. 3 (1), 2 (2019).
check_url/63695?article_type=t

Play Video

Cite This Article
Chattopadhyay, A., Joseph, J. P., Shyam, S., Nandi, D. Characterizing Salmonella Typhimurium-induced Septic Peritonitis in Mice. J. Vis. Exp. (185), e63695, doi:10.3791/63695 (2022).

View Video