Summary

Test af in vitro - og in vivo-effektiviteten af mRNA-lipidnanopartikler formuleret ved mikrofluidisk blanding

Published: January 20, 2023
doi:

Summary

Her præsenteres en protokol til formulering af lipidnanopartikler (LNP’er), der indkapsler mRNA-kodning af ildflueluciferase. Disse LNP’er blev testet for deres styrke in vitro i HepG2-celler og in vivo i C57BL/6-mus.

Abstract

Lipidnanopartikler (LNP’er) har tiltrukket sig stor opmærksomhed for nylig med den vellykkede udvikling af COVID-19 mRNA-vaccinerne af Moderna og Pfizer/BioNTech. Disse vacciner har vist effektiviteten af mRNA-LNP-terapi og åbnet døren for fremtidige kliniske anvendelser. I mRNA-LNP-systemer fungerer LNP’erne som leveringsplatforme, der beskytter mRNA-lasten mod nedbrydning af nukleaser og formidler deres intracellulære levering. LNP’erne består typisk af fire komponenter: et ioniserbart lipid, et phospholipid, kolesterol og et lipidforankret polyethylenglycol (PEG) konjugat (lipid-PEG). Her formuleres LNP’er, der indkapsler mRNA-kodende firefly luciferase ved mikrofluidisk blanding af den organiske fase indeholdende LNP-lipidkomponenter og den vandige fase indeholdende mRNA. Disse mRNA-LNP’er testes derefter in vitro for at evaluere deres transfektionseffektivitet i HepG2-celler ved hjælp af et bioluminescerende pladebaseret assay. Derudover evalueres mRNA-LNP’er in vivo i C57BL/6-mus efter en intravenøs injektion via den laterale halevene. Helkropsbioluminescensbilleddannelse udføres ved hjælp af et in vivo-billeddannelsessystem. Repræsentative resultater vises for mRNA-LNP-egenskaberne, deres transfektionseffektivitet i HepG2-celler og den totale selvlysende flux i C57BL/6-mus.

Introduction

Lipidnanopartikler (LNP’er) har vist sig meget lovende i de senere år inden for ikke-viral genterapi. I 2018 godkendte United States Food and Drug Administration (FDA) den første RNA-interferens (RNAi) terapeutiske, Onpattro af Alnylam, til behandling af arvelig transthyretin amyloidose 1,2,3,4. Dette var et vigtigt skridt fremad for lipidnanopartikler og RNA-baserede terapier. For nylig modtog Moderna og Pfizer/BioNTech FDA-godkendelser for deres mRNA-LNP-vacciner mod SARS-CoV-2 4,5. I hver af disse LNP-baserede nukleinsyreterapier tjener LNP til at beskytte sin last mod nedbrydning af nukleaser og lette potent intracellulær levering 6,7. Mens LNP’er har set succes i RNAi-terapier og vaccineapplikationer, er mRNA-LNP’er også blevet undersøgt til brug i proteinerstatningsterapier8 samt til co-levering af Cas9 mRNA og guide-RNA til levering af CRISPR-Cas9-systemet til genredigering9. Der er imidlertid ingen specifik formulering, der er velegnet til alle applikationer, og subtile ændringer i LNP-formuleringsparametrene kan i høj grad påvirke styrken og biodistributionen in vivo 8,10,11. Således skal individuelle mRNA-LNP’er udvikles og evalueres for at bestemme den optimale formulering for hver LNP-baseret terapi.

LNP’er formuleres almindeligvis med fire lipidkomponenter: et ioniserbart lipid, et phospholipid, kolesterol og et lipidforankret polyethylenglycol (PEG) konjugat (lipid-PEG)11,12,13. Den potente intracellulære levering lettet af LNP’er er delvis afhængig af den ioniserbare lipidkomponent12. Denne komponent er neutral ved fysiologisk pH, men bliver positivt ladet i det sure miljø i endosomet11. Denne ændring i ionisk ladning menes at være en vigtig bidragyder til endosomal flugt12,14,15. Ud over det ioniserbare lipid forbedrer phospholipidkomponenten (hjælperlipid) indkapslingen af lasten og hjælper med endosomal flugt, kolesterolet giver stabilitet og forbedrer membranfusion, og lipid-PEG minimerer LNP-aggregering og opsonisering i omløb10,11,14,16. For at formulere LNP kombineres disse lipidkomponenter i en organisk fase, typisk ethanol, og blandes med en vandig fase indeholdende nukleinsyrelasten. LNP-formuleringsprocessen er meget alsidig, idet den gør det muligt let at erstatte og kombinere forskellige komponenter i forskellige molære forhold for at formulere mange LNP-formuleringer med en lang række fysisk-kemiske egenskaber10,17. Men når man udforsker dette store udvalg af LNP’er, er det afgørende, at hver formulering evalueres ved hjælp af en standardiseret procedure for nøjagtigt at måle forskellene i karakterisering og ydeevne.

Her skitseres den komplette arbejdsgang til formulering af mRNA-LNP’er og vurderingen af deres ydeevne i celler og dyr.

Protocol

BEMÆRK: Oprethold altid RNase-frie forhold, når du formulerer mRNA-LNP’er ved at tørre overfladerne og udstyret af med et overfladedekontaminant til RNaser og DNA. Brug kun RNase-fri spidser og reagenser. Alle dyreforsøg blev udført i overensstemmelse med retningslinjerne for pleje og brug af forsøgsdyr ved University of Pennsylvania og en protokol godkendt af Institutional Animal Care and Use Committee (IACUC) ved University of Pennsylvania. 1. Forbered…

Representative Results

mRNA-LNP’er blev formuleret under anvendelse af et mikrofluidisk instrument, der havde en gennemsnitlig hydrodynamisk diameter på 76, 16 nm og et polydispersitetsindeks på 0, 098. PKa af mRNA-LNP’erne viste sig at være 5,75 ved at udføre et TNS-assay18. Indkapslingseffektiviteten for disse mRNA-LNP’er blev beregnet til at være 92,3% ved anvendelse af det modificerede fluorescensassay og ligning 4,4. Den samlede RNA-koncentration, der blev anvendt til celle…

Discussion

Med denne arbejdsgang kan en række mRNA-LNP’er formuleres og testes for deres in vitro– og in vivo-effektivitet. Ioniserbare lipider og hjælpestoffer kan udskiftes og kombineres ved forskellige molære forhold og forskellige ioniserbare lipid til mRNA-vægtforhold for at producere mRNA-LNP’er med forskellige fysisk-kemiske egenskaber22. Her formulerede vi C12-200 mRNA-LNP’er med et molært forhold på 35/16/46,5/2,5 (ioniserbart lipid:hjælperlipid:kolesterol:lipid-PEG) ved et …

Disclosures

The authors have nothing to disclose.

Acknowledgements

M.J.M. anerkender støtte fra en US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), en Burroughs Wellcome Fund Career Award ved Scientific Interface (CASI), en US National Science Foundation CAREER-pris (CBET-2145491) og yderligere finansiering fra National Institutes of Health (NCI R01 CA241661, NCI R37 CA244911 og NIDDK R01 DK123049).

Materials

0.1 M Hydrochloric Acid Sigma 7647-01-0
0.22 μm Syringe Filters Genesee 25-243
1 mL BD Slip Tip Syringe BD 309659
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (C14-PEG2000) Avanti Polar Lipids 880150P
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) Avanti Polar Lipids 850725P
1.5 mL Eppendorf Tubes Fisher Scientific 05-408-129
15 mL Conical Tubes Fisher Scientific 14-959-70C
200 proof Ethanol Decon Labs 2716
23G Needles Fisher Scientific 14-826-6C
3 mL BD Disposable Syringes with Luer-Lok tips Fisher Scientific 14-823-435
3 mL Dialysis Cassettes Thermo Scientific A52976
96 Well Black Wall Black Bottom Plate Fisher Scientific 07-000-135
96 Well White/Clear Bottom Plate, TC Surface Thermo Scientific 165306
Ammonium Acetate, 1 Kilogram Research Products International  631-61-8
Ammonium Citrate dibasic SIgma 3012-65-5
BD Luer-Lok Syringe sterile, single use, 5 mL BD 309646
C12-200 Ionizable Lipid Cayman Chemical 36699
C57BL/6 Mice Jackson Laboratory 000664
Cholesterol Sigma 57-88-5
CleanCap FLuc mRNA (5moU) TriLink Biotechnologies L-7202
Disposable cuvettes Fisher Scientific 14955129
D-Luciferin, Potassium Salt Thermo Scientific L2916
DMEM, high glucose Thermofisher Scientific 11965-084
Exel Insulin Syringes – 0.5 mL Fisher Scientific 1484132
Fetal Bovine Serum Corning 35-010-CV
Hep G2 [HEPG2] ATCC HB-8065
HyPure Molecular Biology Grade Water Cytiva SH30538.03
Infinite 200 PRO Plate Reader Tecan N/A
IVIS Spectrum In Vivo Imaging System Perkin Elmer N/A
Large Kimwipes Fisher Scientific 06-666-11D
Luciferase Assay Kit Promega E4550
NanoAssemblr Ignite Cartridges – Classic – 100 Pack Precision Nanosystems NIN0065
NanoAssemblr Ignite Instrument Precision Nanosystems NIN0001
PBS – Phosphate-Buffered Saline (10x) pH 7.4, RNase-free Thermo Scientific AM9624
Penicillin-Streptomycin Thermofisher Scientific 15140122
QB Citrate Buffer, (Citrate 100 mM) pH 3.0 Teknova Q2442
Quant-it RiboGreen RNA Assay Kit Thermo Scientific R11490
Reporter Lysis 5x Buffer Promega E3971
RNase Away Surface Decontaminant Thermofisher Scientific 7000TS1
Sodium Chloride Sigma 7647-14-5
Sodium Hydroxide Sigma 1310-73-2
Sodium Phosphate Sigma 7601-54-9
TNS reagent (6-(p-Toluidino)-2-naphthalenesulfonic acid sodium salt) Sigma T9792
Triton X-100 Sigma 9036-19-5
Zetasizer Malvern Panalytical NanoZS

References

  1. Cheng, Q., et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology. 15 (4), 313-320 (2020).
  2. Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nature Reviews Neurology. 14 (9), 509 (2018).
  3. Zhang, X., Goel, V., Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients With hereditary transthyretin-mediated amyloidosis. Journal of Clinical Pharmacology. 60 (5), 573-585 (2019).
  4. Shepherd, S. J., et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Letters. 21 (13), 5671-5680 (2021).
  5. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R., Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnology. 40 (6), 840-854 (2022).
  6. Mukalel, A. J., Riley, R. S., Zhang, R., Mitchell, M. J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Letters. 458, 102-112 (2019).
  7. Akhtar, S. Oral delivery of siRNA and antisense oligonucleotides. Journal of Drug Targeting. 17 (7), 491-495 (2009).
  8. Guimaraes, P. P. G., et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release. 316, 404-417 (2019).
  9. Qiu, M., et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proceedings of the National Academy of Sciences of the United States of America. 118 (10), 2020401118 (2021).
  10. Zhang, R., et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomaterials Science. 9 (4), 1449-1463 (2021).
  11. El-Mayta, R., et al. A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids. Advanced Therapeutics. 4 (1), 2000111 (2021).
  12. Patel, S., et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nature Communications. 11, 983 (2020).
  13. Kulkarni, J. A., et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine: Nanotechnology, Biology, and Medicine. 13 (4), 1377-1387 (2017).
  14. Cheng, X., Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews. 99, 129-137 (2016).
  15. Varkouhi, A. K., Scholte, M., Storm, G., Haisma, H. J. Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release. 151 (3), 220-228 (2011).
  16. Granot, Y., Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Seminars in Immunology. 34, 68-77 (2017).
  17. Gan, Z., et al. Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands. Bioengineering and Translational Medicine. 5 (3), 10161 (2020).
  18. Patel, S. K., et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. Journal of Controlled Release. 347, 521-532 (2022).
  19. Robinson, E., et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Molecular Therapy. 26 (8), 2034-2046 (2018).
  20. Love, K. T., et al. Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America. 107 (5), 1864-1869 (2010).
  21. Kauffman, K. J., et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters. 15 (11), 7300-7306 (2015).
  22. Billingsley, M. M., et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Letters. 20 (3), 1578-1589 (2020).
  23. Ramaswamy, S., et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proceedings of the National Academy of Sciences of the United States of America. 114 (10), 1941-1950 (2017).
  24. Leung, A. K. K., et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. Journal of Physical Chemistry C. 116 (34), 18440-18450 (2012).
  25. Billingsley, M. M., et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Letters. 22 (1), 533-542 (2022).
  26. Khalil, A. A., et al. Subcutaneous administration of D-luciferin is an effective alternative to intraperitoneal injection in bioluminescence imaging of xenograft tumors in nude mice. ISRN Molecular Imaging. 2013, 689279 (2013).
  27. Qin, J., et al. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Advances. 12 (39), 25397-25404 (2022).
  28. Pardi, N., et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release. 217, 345-351 (2015).
  29. Finn, J. D., et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports. 22 (9), 2227-2235 (2018).
  30. Truong, B., et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proceedings of the National Academy of Sciences of the United States of America. 116 (42), 21150-21159 (2019).
  31. Cheng, Q., et al. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Advanced Materials. 30 (52), 1805308 (2018).
  32. Sedic, M., et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Veterinary Pathology. 55 (2), 341-354 (2018).
  33. Veiga, N., et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nature Communications. 9 (1), 4493 (2018).
  34. Pattipeiluhu, R., et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Advanced Materials. 34 (16), 2201095 (2022).
  35. Rosenblum, D., et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances. 6 (47), (2020).
  36. Fenton, O. S., et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Advanced Materials. 28 (15), 2939-2943 (2016).
  37. Kauffman, K. J., et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters. 15 (11), 7300-7306 (2015).
  38. Tombácz, I., et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Molecular Therapy. 29 (11), 3293-3304 (2021).
  39. Kim, J., et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. Nano. 9 (9), 14792-14806 (2022).
  40. Bevers, S., et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Molecular Therapy. 30 (9), 3078-3094 (2022).
check_url/64810?article_type=t

Play Video

Cite This Article
El-Mayta, R., Padilla, M. S., Billingsley, M. M., Han, X., Mitchell, M. J. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing. J. Vis. Exp. (191), e64810, doi:10.3791/64810 (2023).

View Video