Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

Published: September 15, 2023 doi: 10.3791/65136

Materials

Name Company Catalog Number Comments
1 oz. translucent plastic souffle cups WebstaurantStore 301100PC
2 oz. translucent polystyrene souffle cups WebstaurantStore 760P200N
3 mL plastic pipettors  Cornin 357524
50 mL conical tubes Any brand
64 oz. white double poly-coated paper food cup WebstaurantStore 999SOUP64WB for mosquito enclosement
65 mm lens  Canon MP-E 65mm f/2.8 1-5x Macro Photo Canon Macro Photo MP-E 65mm, 7D-65mm-1X; zoom=1, 200, 6.3, ISO=100; for photographing wings or egg papers, although other cameras are likely sufficient
Aedes aegypti mosquitoes BEI multiple strains as eggs are available
Artifical membrane feeders https://lillieglassblowers.com/ Meduim membrane feeder, Custom made, 33mm Chemglass also offers, but sizes are wrong for us. Ours are about 3 cm?
ATP MP Biomedical ICN15026605 Any good quality ATP, 10mM filter sterile aliquots at -20
Autoclave for sterilizing water for hatching
Canon EOS 7D camera  Canon 3814B004 for photographing wings or egg papers, although other cameras are likely sufficient
defibrinated sheep blood  Colorado Serum Co. 60 ml, every 2 weeks https://colorado-serum-com.3dcartstores.com/sheep-defibrinated
Dual Gooseneck Microscope Illuminator Dolan Jenner Fiber-Lite 180 181-1 System
Ethanol
Forceps Dumont 5SF
Gauze omnisorb ii 4" non-woven sponges
glass microscope slide Fisher Scientific 12-544-2
Glass Petri dishes, 100 × 15 mm VWR 75845-546 for anesthesizing/manipulating mosquitoes on ice
Hogs' gut Any Deli we buy in bulk, split, wash and store in small aliquots of ~4X12" at -20 in 50 ml conical
Ice
Ice bucket
Kimwipe Fisher Scientific 06-666A
Leica GZ4 StereoZoom microscope for screening transgenic mosquitoes (if applicable)
Paintbrush AIT synthetic brush  size 10-0 for manipulating larvae/pupae (Amazon)
Panty hose Walmart L'eggs Everyday  Women's Nylon Plus Knee Highs Sheer Toe, 16 pairs (plus fits the carton)
Pencils Any brand
Plastic containers for 2° storage of cartons Walmart Sterilite 58 Qt Storage Box Clear Base White Lid Set of 8
Plastic containers for growing larvae Walmart Sterilite 28 Qt. Storage Box Plastic, White, Set of 10
Plastic containers for hatching larvae Walmart Sterilite 6 Qt. Storage Box Plastic, White
polypropylene clear deli containers  WebstaurantStore  127DM12BULK 12 oz, or 16 oz if needed for bigger (127RD16BULK)
Rubber bands Office Max  #100736/#909606 /#3777415 12", #64 and #10
Rubber stopper VWR 217-0515 for mosquito enclosement
Sugar source, such as sugar cubes or raisins
Tetramin flake food Tetramin 16106
tpsDig Stony Brook Morphometrics A free morphometric image-processing software distributed online available at https://www.sbmorphometrics.org/
tpsUtil Stony Brook Morphometrics A free morphometric image-processing software distributed online available at https://www.sbmorphometrics.org/
White organza fabric 8” × 8” FabricWholesale.com  4491676 Joann Casa Collection Organza Fabric by Casa Collection 
Whitman Grade 1 Qualitative Filter paper  Whitman 1001-824 for egg papers. The white color makes it easier to see the black eggs.

DOWNLOAD MATERIALS LIST

References

  1. Dawkins, R. The Selfish Gene. New edition. , University Press. Oxford, New York. Oxford. (1989).
  2. Crow, J. F. Unmasking a Cheating Gene. Science. 283 (5408), 1651-1652 (1999).
  3. Gould, F. Broadening the application of evolutionarily based genetic pest management. Evolution. 62 (2), 500-510 (2008).
  4. Williams, A. E., Franz, A. W. E., Reid, W. R., Olson, K. E. Antiviral effectors and gene drive strategies for mosquito population suppression or replacement to mitigate arbovirus transmission by Aedes aegypti. Insects. 11 (1), (2020).
  5. Irvin, N., Hoddle, M. S., O'Brochta, D. A., Carey, B., Atkinson, P. W. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proceedings of the National Academy of Sciences. 101 (3), 891-896 (2004).
  6. Moreira, L. A., Wang, J., Collins, F. H., Jacobs-Lorena, M. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics. 166 (3), 1337-1341 (2004).
  7. Dilani, P. V. D., Dassanayake, R. S., Tyagi, B. K., Silva Gunawardene,, N, Y. I. The impact of transgenesis on mosquito fitness: A review. Frontiers in Insect Science. 38, (2022).
  8. Hammond, A. M., et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genetics. 13 (10), (2017).
  9. Reid, W., et al. Assessing single-locus CRISPR/Cas9-based gene drive variants in the mosquito Aedes aegypti via single-generation crosses and modeling. 3 (12), (2022).
  10. Wu, S. L., et al. MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics. PLOS Computational Biology. 17 (5), (2021).
  11. Oberhofer, G., Ivy, T., Hay, B. A. Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements. Proceedings of the National Academy of Sciences. 117 (16), 9013-9021 (2020).
  12. Adolfi, A., et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications. 11 (1), 5553 (2020).
  13. Carballar-Lejarazu, R., et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proceedings of the National Academy of Sciences. 117 (37), 22805-22814 (2020).
  14. Champer, J., et al. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proceedings of the National Academy of Sciences. 117 (39), 24377-24383 (2020).
  15. Champer, S. E. 15, et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Science Advances. 6 (10), (2020).
  16. Li, M., et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife. 9. 51701, (2020).
  17. Champer, S. E., Kim, I. K., Clark, A. G., Messer, P. W., Champer, J. Anopheles homing suppression drive candidates exhibit unexpected performance differences in simulations with spatial structure. eLife. 11, 79121 (2022).
  18. Petersen, V., et al. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus. Revista da Sociedade Brasileira de Medicina Tropical. 49 (4), 508-511 (2016).
  19. Yeap, H. L., Hoffmann, A. A., Endersby, N. M., Ritchie, S. A., Johnson, P. H. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. The American Journal of Tropical Medicine and Hygiene. 89 (1), 78-92 (2013).
  20. Fecundity Briegel, H. metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. Journal of Medical Entomology. 27 (5), 839-850 (1990).
  21. Hurd, H., Hogg, J. C., Renshaw, M. Interactions between bloodfeeding, fecundity and infection in mosquitoes. Parasitology Today. 11 (11), 411-416 (1995).
  22. Kistler, K. E., Vosshall, L. B., Matthews, B. J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Reports. 11 (1), 51-60 (2015).
  23. Coates, C. J., Jasinskiene, N., Miyashiro, L., James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences. 95 (7), 3748-3751 (1998).
  24. Carvalho, D. O., et al. Mass production of genetically modified Aedes aegypti for field releases in Brazil. Journal of Visualized Experiments. 83 (83), (2014).
  25. Clemons, A., Mori, A., Haugen, M., Severson, D. W., Duman-Scheel, M. Culturing and egg collection of Aedes aegypti. Cold Spring Harbor Protocols. (10), (2010).
  26. Rohlf, F. J. TpsDig (2.32) [Computer software. , (2018).
  27. Rohlf, F. J. TpsUtil (1.79) [Computer software. , (2018).
  28. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., Fink, W. L. Geometric Morphometrics for Biologists. , Elsevier Academic Press. New York, NY. (2017).
  29. Size Klingenberg, C. P., shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution. 226 (3), 113-137 (2016).
  30. Axford, J. K., Ross, P. A., Yeap, H. L., Callahan, A. G., Hoffmann, A. A. Fitness of wAlbB Wolbachia infection in Aedes aegypti: Parameter estimates in an outcrossed background and potential for population invasion. American Journal of Tropical Medicine and Hygiene. 94 (3), 507-516 (2016).
  31. Ross, P. A., Hoffmann, A. A. Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes. Environmental Microbiology. 24 (12), 5749-5759 (2022).
  32. Rigby, L. M., Johnson, B. J., Peatey, C. L., Beebe, N. W., Devine, G. J. The impact of sublethal permethrin exposure on susceptible and resistant genotypes of the urban disease vector Aedes aegypti. Pest Management Science. 77 (7), 3450-3457 (2021).
  33. Smith, L. B., Silva, J. J., Chen, C., Harrington, L. C., Scott, J. G. Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Neglected Tropical Diseases. 15 (3), 0009271 (2021).
  34. Chaves, B. A., et al. Vertical transmission of Zika virus (Flaviviridae, Flavivirus) in Amazonian Aedes aegypti (Diptera: Culicidae) delays egg hatching and larval development of progeny. Journal of Medical Entomology. 56 (6), 1739-1744 (2019).
  35. Kuno, G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. Journal of Medical Entomology. 47 (6), 957-971 (2010).
  36. David, M., Garcia, G., Valle, D., Maciel-de-Freitas, R. Insecticide resistance and fitness: the case of four Aedes aegypti populations from different Brazilian regions. BioMed Research International. , (2018).
  37. Wendell, M. D., Wilson, T. G., Higgs, S., Black, W. C. Chemical and gamma-ray mutagenesis of the white gene in Aedes aegypti. Insect Molecular Biology. 9 (2), 119-125 (2000).
  38. Koenraadt, C. J., Kormaksson, M., Harrington, L. C. Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves. Parasites and Vectors. 3, (2010).
  39. Rezende, G. L., et al. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Developmental Biology. 8, (2008).
  40. Farnesi, L. C., Vargas, H. C. M., Valle, D., Rezende, G. L. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Neglected Tropical Diseases. 11 (10), (2017).
  41. Carvalho, D. O., et al. Mosquito pornoscopy: Observation and interruption of Aedes aegypti copulation to determine female polyandric event and mixed progeny. PLoS ONE. 13 (3), (2018).
  42. Helinski, M. E., Harrington, L. C. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti. Journal of Medical Entomology. 48 (2), 202-211 (2011).
  43. Felipe Ramarez-Sanchez,, Camargo, L., Avila, C., W, F. Male sexual history influences female fertility and re-mating incidence in the mosquito vector Aedes aegypti (Diptera: Culicidae). Journal of Insect Physiology. 121, 104019 (2020).
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Williams, A. E., Sanchez-Vargas, I., More

Williams, A. E., Sanchez-Vargas, I., Martin, L. E., Martin-Martin, I., Bennett, S., Olson, K. E., Calvo, E. Quantifying Fitness Costs in Transgenic Aedes aegypti Mosquitoes. J. Vis. Exp. (199), e65136, doi:10.3791/65136 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter