Summary

孕妇子宫收缩的肌电图成像

Published: May 26, 2023
doi:

Summary

我们提出了进行肌电成像 (EMMI) 的方案,包括以下程序:来自体表的多个肌电图电极传感器记录、磁共振成像和子宫电信号重建。

Abstract

在正常怀孕期间,子宫平滑肌(子宫肌层)在妊娠晚期开始出现微弱、不协调的收缩,以帮助子宫颈重塑。在分娩时,子宫肌层具有强烈、协调的收缩来分娩胎儿。已经开发了各种方法来监测子宫收缩模式以预测分娩开始。然而,目前的技术具有有限的空间覆盖范围和特异性。我们开发了肌电成像 (EMMI),以在宫缩期间无创地将子宫电活动映射到三维子宫表面。EMMI 的第一步是使用 T1 加权磁共振成像来获取受试者特定的身体-子宫几何形状。接下来,使用放置在体表上的多达 192 个针型电极来收集子宫肌层的电记录。最后,执行EMMI数据处理流水线,将体-子宫几何形状与体表电数据相结合,对子宫表面的子宫电活动进行重建和成像。EMMI可以安全、无创地对整个子宫的早期激活区域和传播模式进行三维成像、识别和测量。

Introduction

临床上,通过使用宫内压力导管或进行宫缩力测定法来测量子宫收缩1.在研究环境中,可以通过肌电图 (EMG) 测量子宫收缩,其中将电极放置在腹部表面以测量子宫肌层234567 产生的生物电信号。人们可以使用源自肌电图的电爆发89101112 的幅度频率和传播特征来预测早产儿分娩的开始。然而,在传统的肌电图中,子宫收缩的电活动仅从腹表面的一个小区域测量,电极数量有限(腹面中央的两个 13 和四个7、14、1516,下腹表面 64 17)。此外,传统的肌电图在研究分娩机制方面的能力有限,因为它只能反映整个子宫的平均电活动,而无法检测宫缩期间子宫表面的特定电启动和激活模式。

最近引入了一种称为肌电成像 (EMMI) 的发展,以克服传统肌电图的缺点。EMMI能够在子宫收缩期间对整个子宫肌层的电激活序列进行无创成像18,19,20,21。为了获得体与子宫的几何形状,EMMI 使用 T1 加权磁共振成像 (MRI)222324,该成像已广泛用于孕中期和孕晚期的孕妇。接下来,使用放置在体表上的多达 192 个针型电极来收集子宫肌层的电记录。最后,执行EMMI数据处理流水线,将体-子宫几何形状与电数据相结合,以重建和成像子宫表面的电活动21。EMMI可以在三维空间上准确定位子宫收缩的开始和子宫收缩过程中的图像传播模式。本文旨在介绍EMMI程序并展示从孕妇那里获得的代表性结果。

Protocol

此处描述的所有方法均已获得华盛顿大学机构审查委员会的批准。 1. MRI安全标记贴片、电极贴片和标尺(图1) 将MRI和电极贴片模板(图1A)打印在纸上。 将透明乙烯基和硅橡胶板(材料表)切割成 22(乙烯基)和 44(橡胶)矩形 (120 mm x 60 mm) 以及 4 个(乙烯基)和 8(硅橡?…

Representative Results

具有代表性的MRI安全贴片和电极贴片如图1B,C所示,由图1A所示的模板创建。生物电测绘硬件如图1C所示,并详细标注了每个组件的连接。图 2 显示了整个 EMMI 程序,包括佩戴 MRI 贴片的受试者的 MRI 扫描(图 2A)、3D 光学扫描(图 2B)、生物电映射(图 2C)、体子宫几何形状的生成(图 2D)和 EMMI 数据示意图(<strong c…

Discussion

肌电图表明,子宫电信号的频率和振幅在妊娠期发生变化 2,16,25几项研究探讨了积极分娩患者子宫收缩的子宫增殖模式 10,17,26,27,28。尽管如此,由于数量和覆盖范围有限,以及体表电极的非标准配置,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢黛博拉·弗兰克(Deborah Frank)编辑了这份手稿,并感谢杰西卡·丘比兹(Jessica Chubiz)组织了这个项目。 资金:这项工作得到了 March of Dimes Center Grant (22-FY14-486) 的支持,得到了 NIH/National Institute of Child Health and Human Development (R01HD094381 to PIs Wang/Cahill 的资助;R01HD104822给 PI Wang/Schwartz/Cahill),来自 Burroughs Wellcome Fund 早产倡议(NGP10119给 PI Wang)的赠款,以及比尔和梅琳达·盖茨基金会的赠款(INV-005417、INV-035476 和 INV-037302 给 PI Wang)。

Materials

16 G Vinyl 54" Clear Jo-Ann Stores 1532449
3 T Siemens Prisma Siemens N/A MRI scanner
3M double coated medical tape – transparent MBK tape solutions 1522 Width – 0.5"
Active electrode holders with X -ring Biosemi N/A 17 mm
Amira Thermo Fisher Scientific N/A  Data analysis software
Bella storage solution 28 Quart clear underbed storage tote Mernards  6455002
Extreme-temperature silicone rubber translucent McMaster-Carr 86465K71 Thickness 1.32”
Gorilla super glue gel Amazon N/A
LifeTime carbide punch and die set, 9 Pc. Harbor Freight 95547
Optical 3D scan Artec 3D Artec Eva Lite
PDI super sani cloth germicidal wipes McKesson medical supply company Q55172 Santi-cloth
Pin-type active electrodes Biosemi Pin-type
REDUX electrolyte gel Amazon 67-05
Soft cloth measuring tape Amazon N/A any brand can be used
Sterilite layer handle box Walmart 14228604 Closed box
TD-22 Electrode collar 8 mm Discount disposables N/A
Vida scanner Siemens N/A MRI scanner
Vitamin E dl-Alpha 400 IU – 100 liquid softgels Nature made SU59FC52EE73DC3

References

  1. Hadar, E., Biron-Shental, T., Gavish, O., Raban, O., Yogev, Y. A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. The Journal of Maternal-Fetal & Neonatal Medicine. 28 (12), 1367-1374 (2015).
  2. Schlembach, D., Maner, W. L., Garfield, R. E., Maul, H. Monitoring the progress of pregnancy and labor using electromyography. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 144, S33-S39 (2009).
  3. Jacod, B. C., Graatsma, E. M., Van Hagen, E., Visser, G. H. A. A validation of electrohysterography for uterine activity monitoring during labour. The Journal of Maternal-Fetal & Neonatal Medicine. 23 (1), 17-22 (2009).
  4. Garfield, R. E., et al. Uterine Electromyography and light-induced fluorescence in the management of term and preterm labor. Journal of the Society for Gynecologic Investigation. 9 (5), 265-275 (2016).
  5. Devedeux, D., Marque, C., Mansour, S., Germain, G., Duchêne, J. Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology. 169 (6), 1636-1653 (1993).
  6. Jain, S., Saad, A. F., Basraon, S. S. Comparing uterine electromyography & tocodynamometer to intrauterine pressure catheter for monitoring labor. Journal of Woman’s Reproductive Health. 1 (3), 22-30 (2016).
  7. Lucovnik, M., et al. Use of uterine electromyography to diagnose term and preterm labor. Acta Obstetricia et Gynecologica Scandinavica. 90 (2), 150-157 (2011).
  8. Garcia-Casado, J., et al. Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39 (2), 02 (2018).
  9. Maner, W. L., Garfield, R. E. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Annals of Biomedical Engineering. 35 (3), 465-473 (2007).
  10. Rabotti, C., Mischi, M. Propagation of electrical activity in uterine muscle during pregnancy: a review. Acta Physiologica. 213 (2), 406-416 (2015).
  11. Cohen, W. R. Clinical assessment of uterine contractions. International Journal of Gynaecology and Obstetrics. 139 (2), 137-142 (2017).
  12. Maner, W. L., Garfield, R. E., Maul, H., Olson, G., Saade, G. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology. 101 (6), 1254-1260 (2003).
  13. Leman, H., Marque, C., Gondry, J. Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering. 46 (10), 1222-1229 (1999).
  14. Vasak, B., et al. Uterine electromyography for identification of first-stage labor arrest in term nulliparous women with spontaneous onset of labor. American Journal of Obstetrics and Gynecology. 209 (3), e1-e8 (2013).
  15. Euliano, T. Y., et al. Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology. 208 (1), e1-e6 (2013).
  16. Garfield, R. E., Maner, W. L. Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology. 18 (3), 289-295 (2007).
  17. Rabotti, C., Bijloo, R., Oei, G., Mischi, M. Vectorial analysis of the electrohysterogram for prediction of preterm delivery: a preliminary study. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. , 3880-3883 (2011).
  18. Wu, W., et al. Noninvasive high-resolution electromyometrial imaging of uterine contractions in a translational sheep model. Science Translational Medicine. 11 (483), (2019).
  19. Wang, H., et al. Accuracy of electromyometrial imaging of uterine contractions in clinical environment. Computers in Biology and Medicine. 116, 103543 (2020).
  20. Cahill, A. G., et al. Analysis of electrophysiological activation of the uterus during human labor contractions. JAMA Network Open. 5 (6), 2214707 (2022).
  21. Wang, H., et al. Noninvasive electromyometrial imaging of human uterine maturation during term labor. Nature Communications. 14 (1), 1198 (2023).
  22. Kok, R. D., de Vries, M. M., Heerschap, A., vanden Berg, P. P. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: A follow-up study. Magnetic Resonance Imaging. 22 (6), 851-854 (2004).
  23. Choi, J. S., et al. A case series of 15 women inadvertently exposed to magnetic resonance imaging in the first trimester of pregnancy. Journal of Obstetrics and Gynaecology. 35 (8), 871-872 (2015).
  24. Ray, J. G., Vermeulen, M. J., Bharatha, A., Montanera, W. J., Park, A. L. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 316 (9), 952-961 (2016).
  25. Benedetti, M. G., Agostini, V., Knaflitz, M., Bonato, P. Applications of EMG in clinical and sports medicine. Intech Open. , 117-130 (2012).
  26. Lange, L., et al. Velocity and directionality of the electrohysterographic signal propagation. PloS One. 9 (1), e86775 (2014).
  27. Planes, J. G., Morucci, J. P., Grandjean, H., Favretto, R. External recording and processing of fast electrical activity of the uterus in human parturition. Medical & Biological Engineering & Computing. 22 (6), 585-591 (1984).
  28. Mikkelsen, E., Johansen, P., Fuglsang-Frederiksen, A., Uldbjerg, N. Electrohysterography of labor contractions: propagation velocity and direction. Acta Obstetricia et Gynecologica Scandinavica. 92 (9), 1070-1078 (2013).
  29. Young, R. C. The uterine pacemaker of labor. Best Practice & Research. Clinical Obstetrics & Gynaecology. 52, 68-87 (2018).
  30. Goldenberg, R. L. The management of preterm labor. Obstetrics and Gynecology. 100 (5), 1020-1037 (2002).
  31. Rubens, C. E., et al. Prevention of preterm birth: harnessing science to address the global epidemic. Science Translational Medicine. 6 (262), 5 (2014).
  32. Shi, H., et al. Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures. Advanced Functional Materials. 29 (23), 1809116 (2019).
  33. Lo, L. W., et al. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Applied Materials and Interfaces. 13 (18), 21693-21702 (2021).
  34. Lo, L. W., et al. Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano. 16 (8), 11792-11801 (2022).
check_url/65214?article_type=t

Play Video

Cite This Article
Wang, H., Wen, Z., Wu, W., Sun, Z., Wang, Q., Schwartz, A. L., Cuculich, P., Cahill, A. G., Macones, G. A., Wang, Y. Electromyometrial Imaging of Uterine Contractions in Pregnant Women. J. Vis. Exp. (195), e65214, doi:10.3791/65214 (2023).

View Video