Summary

Quantifizierung der visuellen Merkmalsselektivität des optokinetischen Reflexes in Mäusen

Published: June 23, 2023
doi:

Summary

Hier beschreiben wir ein Standardprotokoll zur Quantifizierung des optokinetischen Reflexes. Es kombiniert virtuelle Trommelstimulation und Video-Okulographie und ermöglicht so eine präzise Bewertung der Merkmalsselektivität des Verhaltens und seiner adaptiven Plastizität.

Abstract

Der optokinetische Reflex (OKR) ist eine essentielle angeborene Augenbewegung, die durch die globale Bewegung der visuellen Umgebung ausgelöst wird und der Stabilisierung von Netzhautbildern dient. Aufgrund seiner Bedeutung und Robustheit wurde das OKR verwendet, um visuell-motorisches Lernen zu untersuchen und die visuellen Funktionen von Mäusen mit unterschiedlichen genetischen Hintergründen, Altersgruppen und medikamentösen Behandlungen zu bewerten. Hier stellen wir ein Verfahren vor, um OKR-Antworten von kopffixierten Mäusen mit hoher Genauigkeit zu bewerten. Die Kopffixierung kann den Beitrag der vestibulären Stimulation zu den Augenbewegungen ausschließen, so dass Augenbewegungen gemessen werden können, die nur durch visuelle Bewegungen ausgelöst werden. Das OKR wird durch ein virtuelles Trommelsystem hervorgerufen, bei dem ein vertikales Gitter, das auf drei Computermonitoren präsentiert wird, horizontal oszillierend oder unidirektional mit konstanter Geschwindigkeit driftet. Mit diesem Virtual-Reality-System können wir visuelle Parameter wie Ortsfrequenz, Zeit-/Schwingungsfrequenz, Kontrast, Leuchtdichte und die Richtung von Gittern systematisch ändern und Abstimmungskurven der visuellen Merkmalsselektivität quantifizieren. Die Hochgeschwindigkeits-Infrarot-Videookulografie sorgt für eine genaue Messung der Flugbahn von Augenbewegungen. Die Augen einzelner Mäuse sind kalibriert, um die Möglichkeit zu bieten, die OKRs zwischen Tieren unterschiedlichen Alters, Geschlechts und genetischem Hintergrund zu vergleichen. Die quantitative Leistungsfähigkeit dieser Technik ermöglicht es, Veränderungen im OKR zu erkennen, wenn sich dieses Verhalten aufgrund von Alterung, sensorischer Erfahrung oder motorischem Lernen plastisch anpasst. Damit ist diese Technik eine wertvolle Ergänzung des Repertoires an Werkzeugen, die zur Untersuchung der Plastizität des Augenverhaltens verwendet werden.

Introduction

Als Reaktion auf visuelle Reize in der Umgebung bewegen sich unsere Augen, um unseren Blick zu verschieben, Netzhautbilder zu stabilisieren, sich bewegende Ziele zu verfolgen oder die Foveen zweier Augen auf Ziele auszurichten, die sich in unterschiedlichen Entfernungen vom Beobachter befinden, was für das richtige Sehen von entscheidender Bedeutung ist 1,2. Okulomotorische Verhaltensweisen werden häufig als attraktive Modelle der sensomotorischen Integration verwendet, um die neuronalen Schaltkreise in Gesundheit und Krankheit zu verstehen, zumindest teilweise aufgrund der Einfachheit des okulomotorischen Systems3. Das Auge, das von drei Paaren extraokularer Muskeln gesteuert wird, dreht sich in der Augenhöhle hauptsächlich um drei korrespondierende Achsen: Hebung und Vertiefung entlang der Querachse, Adduktion und Abduktion entlang der vertikalen Achse sowie Intorion und Extorsion entlang der anteroposterioren Achse 1,2. Ein solch einfaches System ermöglicht es Forschern, das okulomotorische Verhalten von Mäusen in einer Laborumgebung einfach und genau zu bewerten.

Ein wichtigstes okulomotorisches Verhalten ist der optokinetische Reflex (OKR). Diese unwillkürliche Augenbewegung wird durch langsame Drifts oder Verrutscher von Bildern auf der Netzhaut ausgelöst und dient der Stabilisierung von Netzhautbildern, wenn sich der Kopf eines Tieres oder seine Umgebung bewegt 2,4. Das OKR als Verhaltensparadigma ist für Forscher aus mehreren Gründen interessant. Erstens kann es zuverlässig stimuliert und genau quantifiziert werden 5,6. Zweitens sind die Verfahren zur Quantifizierung dieses Verhaltens relativ einfach und standardisiert und können angewendet werden, um die visuellen Funktionen einer großen Kohorte von Tieren zu bewerten7. Drittens ist dieses angeborene Verhalten hochgradig plastisch 5,8,9. Seine Amplitude kann potenziert werden, wenn über einen längeren Zeitraum wiederholte Netzhautverschiebungen auftreten 5,8,9 oder wenn sein Arbeitspartner vestibulärer Augenreflex (VOR), ein weiterer Mechanismus zur Stabilisierung von Netzhautbildern, der durch vestibulären Input2 ausgelöst wird, beeinträchtigt ist5. Diese experimentellen Paradigmen der OKR-Potenzierung ermöglichen es den Forschern, die Schaltkreisbasis zu enthüllen, die dem okulomotorischen Lernen zugrunde liegt.

Zur Auswertung der OKR wurden in bisherigen Studien vor allem zwei nicht-invasive Methoden eingesetzt: (1) Video-Okulographie kombiniert mit einer physischen Trommel 7,10,11,12,13 oder (2) willkürliche Bestimmung von Kopfdrehungen in Kombination mit einer virtuellen Trommel 6,14,15,16. Obwohl ihre Anwendungen fruchtbare Entdeckungen zum Verständnis der molekularen und Schaltkreismechanismen der okulomotorischen Plastizität gemacht haben, haben diese beiden Methoden jeweils einige Nachteile, die ihre Möglichkeiten bei der quantitativen Untersuchung der Eigenschaften des OKR einschränken. Erstens erlauben physische Trommeln mit gedruckten Mustern aus schwarzen und weißen Streifen oder Punkten keine einfachen und schnellen Änderungen visueller Muster, was die Messung der Abhängigkeit des OKR von bestimmten visuellen Merkmalen wie Ortsfrequenz, Richtung und Kontrast von sich bewegenden Gittern weitgehend einschränkt 8,17. Stattdessen können Tests der Selektivität des OKR für diese visuellen Merkmale von einer computergestützten visuellen Stimulation profitieren, bei der visuelle Merkmale bequem von Versuch zu Versuch modifiziert werden können. Auf diese Weise können Forschende das OKR-Verhalten im mehrdimensionalen visuellen Parameterraum systematisch untersuchen. Darüber hinaus meldet die zweite Methode des OKR-Assays nur die Schwellenwerte visueller Parameter, die erkennbare OKRs auslösen, nicht aber die Amplituden von Augen- oder Kopfbewegungen 6,14,15,16. Der Mangel an quantitativer Aussagekraft verhindert daher die Analyse der Form von Abstimmungskurven und der bevorzugten visuellen Merkmale oder das Erkennen subtiler Unterschiede zwischen einzelnen Mäusen unter normalen und pathologischen Bedingungen. Um die oben genannten Einschränkungen zu überwinden, wurden Video-Okulographie und computergestützte virtuelle visuelle Stimulation kombiniert, um das OKR-Verhalten in neueren Studien zu untersuchen 5,17,18,19,20. Diese bisher veröffentlichten Studien lieferten jedoch nicht genügend technische Details oder Schritt-für-Schritt-Anleitungen, so dass es für Forschende immer noch eine Herausforderung ist, einen solchen OKR-Test für die eigene Forschung zu etablieren.

Hier stellen wir ein Protokoll vor, um die visuelle Merkmalsselektivität des OKR-Verhaltens unter photopischen oder skotopischen Bedingungen mit der Kombination von Video-Okulographie und computergestützter virtueller visueller Stimulation genau zu quantifizieren. Mäuse werden mit dem Kopf fixiert, um die durch vestibuläre Stimulation hervorgerufenen Augenbewegungen zu vermeiden. Eine Hochgeschwindigkeitskamera wird verwendet, um die Augenbewegungen von Mäusen aufzuzeichnen, die sich bewegende Gitter mit wechselnden visuellen Parametern betrachten. Die physikalische Größe der Augäpfel einzelner Mäuse wird kalibriert, um die Genauigkeit der Ableitung des Augenwinkels21 zu gewährleisten. Diese quantitative Methode ermöglicht es, das OKR-Verhalten zwischen Tieren unterschiedlichen Alters oder genetischen Hintergrunds zu vergleichen oder seine Veränderung durch pharmakologische Behandlungen oder visuell-motorisches Lernen zu überwachen.

Protocol

Alle experimentellen Verfahren, die in dieser Studie durchgeführt wurden, wurden vom Biological Sciences Local Animal Care Committee in Übereinstimmung mit den Richtlinien des Animal Care Committee der University of Toronto und des Canadian Council on Animal Care genehmigt. 1. Implantation eines Kopfbügels auf dem Schädel HINWEIS: Um den Beitrag des VOR-Verhaltens zu den Augenbewegungen zu vermeiden, wird der Kopf der Maus während des OKR-Tests b…

Representative Results

Mit der oben beschriebenen Vorgehensweise haben wir die Abhängigkeit des OKR von mehreren visuellen Merkmalen bewertet. Die hier gezeigten Beispiel-Traces wurden mit den Analysecodes in Supplementary Coding File 1 abgeleitet, und die Beispiel-Traces-Rohdatei befindet sich in Supplementary Coding File 2. Wenn das Trommelgitter in einer sinusförmigen Trajektorie (0,4 Hz) driftete, folgte das Auge des Tieres automatisch der Bewegung des Gitters in ähnlicher oszillatorischer Weise (<stron…

Discussion

Die hier vorgestellte Methode des OKR-Verhaltensassays bietet mehrere Vorteile. Erstens löst die computergenerierte visuelle Stimulation die intrinsischen Probleme physischer Trommeln. Die virtuelle Trommel befasst sich mit dem Problem, dass physische Trommeln die systematische Untersuchung von Ortsfrequenz-, Richtungs- oder Kontrastabstimmung nicht unterstützen8 und ermöglicht es, diese visuellen Parameter versuchsweise zu ändern, wodurch eine systematische und quantitative Analyse der Merkma…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Wir danken Yingtian He für die Bereitstellung von Daten zur Richtungsabstimmung. Diese Arbeit wurde durch Zuschüsse der Canadian Foundation of Innovation und des Ontario Research Fund (CFI/ORF-Projekt Nr. 37597), NSERC (RGPIN-2019-06479), CIHR (Project Grant 437007) und Connaught New Researcher Awards unterstützt.

Materials

2D translational stage Thorlabs XYT1
Acrylic resin Lang Dental B1356 For fixing headplate on skull and protecting skull
Bupivacaine STERIMAX ST-BX223 Bupivacaine Injection BP 0.5%. Local anesthesia
Carprofen RIMADYL 8507-14-1 Analgesia
Compressed air Dust-Off
Eye ointment Alcon Systane For maintaining moisture of eyes
Graphic card NVIDIA Geforce GTX 1650 or Quadro P620. For generating single screen among three monitors
Heating pad Kent Scientific HTP-1500 For maintaining body temperature
High-speed infrared (IR) camera Teledyne Dalsa G3-GM12-M0640 For recording eye rotation
IR LED Digikey PDI-E803-ND For CR reference and the illumination of the eye
IR mirror Edmund optics 64-471 For reflecting image of eye
Isoflurane FRESENIUS KABI CP0406V2
Labview National instruments version 2014 eye tracking
Lactated ringer BAXTER JB2324 Water and energy supply
Lidocaine and epinephrine mix Dentsply Sirona 82215-1 XYLOCAINE. Local anesthesia
Luminance Meter Konica Minolta LS-150 for calibration of monitors
Matlab MathWorks version xxx analysis of eye movements
Meyhoefer Curette World Precision Instruments 501773 For scraping skull and removing fascia
Microscope calibration slide Amscope MR095 to measure the magnification of video-oculography
Monitors Acer  B247W Visual stimulation
Neutral density filter Lee filters 299 to generate scotopic visual stimulation
Nigh vision goggle Alpha optics AO-3277 for scotopic OKR
Photodiode Digikey TSL254-R-LF-ND to synchronize visual stimulation and video-oculography
Pilocarpine hydrochloride Sigma-Aldrich P6503
Post Thorlabs TR1.5
Post holder Thorlabs PH1
PsychoPy open source software version xxx visual stimulation toolkit
Scissor RWD S12003-09 For skin removal
Superglue Krazy Glue Type: All purpose. For adhering headplate on the skull

References

  1. Gerhard, D. Neuroscience. 5th Edition. Yale Journal of Biology and Medicine. , (2013).
  2. Distler, C., Hoffmann, K. P. . The Oxford Handbook of Eye Movement. , 65-83 (2011).
  3. Sereno, A. B., Bolding, M. S. . Executive Functions: Eye Movements and Human Neurological Disorders. , (2017).
  4. Giolli, R. A., Blanks, R. H. I., Lui, F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Progress in Brain Research. 151, 407-440 (2006).
  5. Liu, B. H., Huberman, A. D., Scanziani, M. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature. 538 (7625), 383-387 (2016).
  6. Prusky, G. T., Alam, N. M., Beekman, S., Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology & Visual Science. 45 (12), 4611-4616 (2004).
  7. Stahl, J. S., van Alphen, A. M., De Zeeuw, C. I. A comparison of video and magnetic search coil recordings of mouse eye movements. Journal of Neuroscience Methods. 99 (1-2), 101-110 (2000).
  8. Faulstich, B. M., Onori, K. A., du Lac, S. Comparison of plasticity and development of mouse optokinetic and vestibulo-ocular reflexes suggests differential gain control mechanisms. Vision Research. 44 (28), 3419-3427 (2004).
  9. Katoh, A., Kitazawa, H., Itohara, S., Nagao, S. Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proceedings of the National Academy of Sciences. 95 (13), 7705-7710 (1998).
  10. Cahill, H., Nathans, J. The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: application to genetic and drug-induced variation. PLoS One. 3 (4), 2055 (2008).
  11. Cameron, D. J., et al. The optokinetic response as a quantitative measure of visual acuity in zebrafish. Journal of Visualized Experiments. (80), 50832 (2013).
  12. de Jeu, M., De Zeeuw, C. I. Video-oculography in mice. Journal of Visualized Experiments. (65), e3971 (2012).
  13. Kodama, T., du Lac, S. Adaptive acceleration of visually evoked smooth eye movements in mice. The Journal of Neuroscience. 36 (25), 6836-6849 (2016).
  14. Doering, C. J., et al. Modified Ca(v)1.4 expression in the Cacna1f(nob2) mouse due to alternative splicing of an ETn inserted in exon 2. PLoS One. 3 (7), e2538 (2008).
  15. Shi, C., et al. Optimization of optomotor response-based visual function assessment in mice. Scientific Reports. 8 (1), 9708 (2018).
  16. Waldner, D. M., et al. Transgenic expression of Cacna1f rescues vision and retinal morphology in a mouse model of congenital stationary night blindness 2A (CSNB2A). Translational Vision Science & Technology. 9 (11), 19 (2020).
  17. Tabata, H., Shimizu, N., Wada, Y., Miura, K., Kawano, K. Initiation of the optokinetic response (OKR) in mice. Journal of Vision. 10 (1), 1-17 (2010).
  18. Al-Khindi, T., et al. The transcription factor Tbx5 regulates direction-selective retinal ganglion cell development and image stabilization. Current Biology. 32 (19), 4286-4298 (2022).
  19. Harris, S. C., Dunn, F. A. Asymmetric retinal direction tuning predicts optokinetic eye movements across stimulus conditions. eLife. 12, e81780 (2023).
  20. van Alphen, B., Winkelman, B. H., Frens, M. A. Three-dimensional optokinetic eye movements in the C57BL/6J mouse. Investigative Ophthalmology & Visual Science. 51 (1), 623-630 (2010).
  21. Stahl, J. S. Calcium channelopathy mutants and their role in ocular motor research. Annals of the New York Academy of Sciences. 956, 64-74 (2002).
  22. Endo, S., et al. Dual involvement of G-substrate in motor learning revealed by gene deletion. Proceedings of the National Academy of Sciences. 106 (9), 3525-3530 (2009).
  23. Thomas, B. B., Seiler, M. J., Sadda, S. R., Coffey, P. J., Aramant, R. B. Optokinetic test to evaluate visual acuity of each eye independently. Journal of Neuroscience Methods. 138 (1-2), 7-13 (2004).
  24. Burroughs, S. L., Kaja, S., Koulen, P. Quantification of deficits in spatial visual function of mouse models for glaucoma. Investigative Ophthalmology & Visual Science. 52 (6), 3654-3659 (2011).
  25. Wakita, R., et al. Differential regulations of vestibulo-ocular reflex and optokinetic response by β- and α2-adrenergic receptors in the cerebellar flocculus. Scientific Reports. 7 (1), 3944 (2017).
  26. Dehmelt, F. A., et al. Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. eLife. 10, e63355 (2021).
  27. Magnusson, M., Pyykko, I., Jantti, V. Effect of alertness and visual attention on optokinetic nystagmus in humans. American Journal of Otolaryngology. 6 (6), 419-425 (1985).
  28. Collins, W. E., Schroeder, D. J., Elam, G. W. Effects of D-amphetamine and of secobarbital on optokinetic and rotation-induced nystagmus. Aviation, Space, and Environmental Medicine. 46 (4), 357-364 (1975).
  29. Reimer, J., et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron. 84 (2), 355-362 (2014).
  30. Sakatani, T., Isa, T. PC-based high-speed video-oculography for measuring rapid eye movements in mice. Neuroscience Research. 49 (1), 123-131 (2004).
  31. Sakatani, T., Isa, T. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neuroscience Research. 58 (3), 324-331 (2007).
  32. Vinck, M., Batista-Brito, R., Knoblich, U., Cardin, J. A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron. 86 (3), 740-754 (2015).
  33. Bradley, M. M., Miccoli, L., Escrig, M. A., Lang, P. J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology. 45 (4), 602-607 (2008).
  34. Hess, E. H., Polt, J. M. Pupil size as related to interest value of visual stimuli. Science. 132 (3423), 349-350 (1960).
  35. Di Stasi, L. L., Catena, A., Canas, J. J., Macknik, S. L., Martinez-Conde, S. Saccadic velocity as an arousal index in naturalistic tasks. Neuroscience and Biobehavioral Reviews. 37 (5), 968-975 (2013).
check_url/65281?article_type=t

Play Video

Cite This Article
Liu, J., Liu, B. Quantification of Visual Feature Selectivity of the Optokinetic Reflex in Mice. J. Vis. Exp. (196), e65281, doi:10.3791/65281 (2023).

View Video