Summary

Bewertung der aphidiziden Wirkung entomopathogener Pilze gegen parthenogenetisches Insekt, Senfblattlaus, Lipaphis erysimi (Kalt.)

Published: July 21, 2023
doi:

Summary

Dieses Protokoll stellt ein optimiertes Bioassay-System für abgetrennte Blätter vor, um die Wirksamkeit von entomopathogenen Pilzen (EPF) gegen die Senfblattlaus (Lipaphis erysimi (Kalt.)), ein parthenogetisches Insekt, zu bewerten. Die Methode beschreibt den Prozess der Datenerhebung während Petrischalenexperimenten und ermöglicht es den Forschern, die Virulenz von EPF gegen Senfblattläuse und andere parthenogenetische Insekten konsistent zu messen.

Abstract

Die Senfblattlaus (L. erysimi) ist ein Schädling, der verschiedene Kreuzblütler befällt und Pflanzenviren überträgt. Um eine umweltfreundliche Schädlingsbekämpfung zu erreichen, sind entomopathogene Pilze (EPF) potenzielle mikrobielle Bekämpfungsmittel zur Bekämpfung dieses Schädlings. Daher ist ein Virulenz-Screening von EPF-Isolaten unter Petrischalenbedingungen vor der Feldanwendung notwendig. Die Senfblattlaus ist jedoch ein parthenogenetisches Insekt, was die Datenerfassung bei Petrischalenexperimenten erschwert. Um dieses Problem anzugehen, wurde ein modifiziertes System für Bioassays mit abgetrennten Blättern entwickelt, bei dem ein Mikrosprühgerät verwendet wird, um Konidien auf Blattläuse zu impfen und das Ertrinken zu verhindern, indem das Trocknen an der Luft nach der Sporensuspension erleichtert wird. Das System hielt während des gesamten Beobachtungszeitraums eine hohe relative Luftfeuchtigkeit aufrecht, und die Blattscheibe blieb über zehn Tage frisch, was eine parthenogenetische Vermehrung der Blattläuse ermöglichte. Um die Ansammlung von Nachkommen zu verhindern, wurde ein tägliches Entfernen mit einem Pinsel eingeführt. Dieses Protokoll demonstriert ein stabiles System zur Bewertung der Virulenz von EPF-Isolaten gegen Senfblattläuse oder andere Blattläuse, das die Auswahl potenzieller Isolate zur Blattlausbekämpfung ermöglicht.

Introduction

Die Senfblattlaus (L. erysimi) ist ein berüchtigter Schädling, der eine Vielzahl von Kreuzblütlern befällt und erhebliche wirtschaftliche Verluste verursacht1. Während mehrere systematische Insektizide zur Bekämpfung des Blattlausbefalls empfohlen wurden, gibt der häufige Einsatz dieser Insektizide Anlass zur Besorgnis über die Pestizidresistenz 2,3. Im Sinne einer umweltfreundlichen Schädlingsbekämpfung könnten daher entomopathogene Pilze (EPF) als geeignete alternative Bekämpfungsstrategie dienen. EPF ist ein Insektenpathogen mit der Fähigkeit, Wirte zu infizieren, indem es in ihre Kutikula eindringt, was es zu einem wirksamen Mittel zur Bekämpfung von Blattläusen und anderen pflanzensaugenden Insekten macht4. Darüber hinaus hat sich EPF als praktikable und nachhaltige Schädlingsbekämpfungstechnik erwiesen, die Vorteile wie den Antagonismus von Pflanzenpathogenen und die Förderung des Pflanzenwachstums bietet5.

EPF kann durch Insekten-Boden-Köder gewonnen oder aus Insektenkadavern im Feld isoliert werden 6,7. Vor der weiteren Verwendung von Pilzisolaten ist jedoch ein Pathogenitätsscreening erforderlich. Es wurden mehrere Studien zur Wirksamkeit von EPF gegen Blattläuse durchgeführt, bei denen es sich um bedeutende Pflanzenschädlinge handelt, die schwere Schäden verursachen können 8,9. Senfblattläuse wurden unter verschiedenen Arten von Blattläusen auf ihre Anfälligkeit für verschiedene Stämme von Beauveria spp., Metarhizium spp., Lecanicillium spp., Paecilomyces spp. und sogar Alternaria getestet, die in erster Linie als saprophytischer und pflanzenpathogener Pilz bekannt ist, aber einige tödliche Wirkungen gegen Senfblattläuse gezeigt hat10,11,12.

Um die Wirksamkeit von EPF gegen Blattläuse unter Laborbedingungen zu bewerten, können Bioassays in zwei Hauptteile unterteilt werden: die Impfkammer und die Pilzinokulation. Das aktuelle Protokoll beschreibt den Bau einer Impfkammer, in der Blattläuse mit verschiedenen Methoden gepflegt werden können, wie z. B. ein herausgeschnittenes Blatt mit einem Blattstiel, der in feuchte Watte eingewickelt ist, eine herausgeschnittene Blattscheibe mit einer Petrischale, die mit gedämpftem Filterpapier ausgekleidet ist, die direkte Pflege an Topfpflanzen oder eine herausgeschnittene Blattscheibe, die in Wasseragar eingebettet ist, in einer Petrischale oder einem Behälter10, 11,13. Gängige Methoden zur Pilzinokulation sind das Besprühen von Konidien, das Eintauchen von Blattläusen in eine Konidiensuspension, das Eintauchen von Blättern in eine Konidiensuspension und die Endophytenimpfung von Pflanzen11,14,15,16. Es gibt zwar verschiedene Inokulationsmethoden, aber die Bioassays sollen die Bedingungen der Feldanwendung simulieren. Zum Beispiel kann im Fall der in Blätter getauchten Methode12,17 die Wirksamkeit von EPF bewertet werden, aber da die Blattläuse die pilzbeladenen Blätter befallen, wird die dorsale Seite der Blattlaus, die eine bevorzugte Penetrationsstelle ist, dem Pilz normalerweise nicht ausgesetzt.

Um die aphidizide Wirkung von EPF unter Laborbedingungen zu bewerten, schlägt dieses Protokoll die Verwendung der von Yokomi und Gottwald18 beschriebenen Methode mit abgetrennten Blättern mit einigen Modifikationen vor, gefolgt von einer Konidieninokulation mit einem Mikrosprühgerät. Bei dieser Methode wird die Luftfeuchtigkeit in der Bioassay-Kammer mindestens sieben Tage lang auf etwa 100 % gehalten, ohne dass zusätzliches Wasser nachgefüllt werden muss18,19. Darüber hinaus stellt die Beschränkung von Blattläusen auf eine Oberfläche sicher, dass sie dem Besprühen von Konidien ausgesetzt sind, und erleichtert die Beobachtungen20. Blattläuse können jedoch in der exponierten Agaroberfläche stecken bleiben, während sie sich in der Impfkammer bewegen. Darüber hinaus kann die Datenerfassung im Petrischalen-Experiment mit Senfblattläusen, die zu den parthenogenetischen Insekten gehören, aufgrund ihrer schnellen Entwicklung und Vermehrung eine Herausforderung darstellen. Es ist schwierig, zwischen geimpften Erwachsenen und ihren Nachkommen zu unterscheiden, ohne sie zu entfernen. Die Details, wie mit diesem Schritt vorzugehen ist, werden selten erwähnt, und einige inkonsistente Faktoren, wie z. B. die Blattverzehrfläche, müssen optimiert werden.

Dieses Protokoll demonstriert ein stabiles System für das Screening der Virulenz von EPF-Isolaten gegen Senfblattläuse, das die Auswahl potenzieller Isolate gegen verschiedene Blattlausarten aus einer umfangreichen EPF-Bibliothek ermöglicht. Im Feld gesammelte Blattläuse können identifiziert werden, und eine ausreichende Laborpopulation von Senfblattläusen kann etabliert werden, um die aphidizide Wirkung verschiedener Pilzisolate mit einer einfachen und praktikablen Methodik mit konsistenten Ergebnissen zu bewerten. Blattläuse haben als Reaktion auf intensive und wiederholte anthropogene Belastungen in Agrarökosystemen mehrere evolutionäre Mechanismen entwickelt, die die Ernährungssicherheit vor Herausforderungen stellen9. Daher könnte diese beschriebene Methode erweitert werden, um potentielle EPF-Isolate gegen verschiedene Blattlausarten zu evaluieren.

Protocol

HINWEIS: Das vollständige Flussdiagramm ist in Abbildung 1 dargestellt. 1. Sammlung und Pflege von Senfblattläusen Sammlung von SenfblattläusenDrehen Sie die Blätter um und prüfen Sie visuell auf Befall von Senfblattläusen auf Kreuzblütlern auf dem Feld. Zeichnen Sie die Informationen über die Probenahmestelle (z. B. GPS) und die Wirtspflanze(n) auf und bestätigen Sie die Historie der Insektizidanwend…

Representative Results

Das vorgestellte Flussdiagramm veranschaulicht den stabilen Zustand der Senfblattläuse von der Feldsammlung bis zum Virulenzscreening. Die Pflege von Blattläusen aus der Feldsammlung sorgte für ein stabiles Wachstum der Blattlauskolonien mit einem ausreichenden Nahrungsangebot. Die im Feld gesammelten Blattläuse wurden durch die Verwendung molekularer Marker, einschließlich PCR-Amplikongröße und LeCO1-Sequenzierung, als Senfblattläuse bestätigt. Das Virulenz-Screening, das mit der Methode der abgetrennten Blätt…

Discussion

Kreuzblütler, eine Gruppe von Gemüsesorten, sind häufig von mehreren Blattlausarten befallen, darunter Senfblattlaus (L. erysimi) und Kohlblattlaus (Brevicoryne brassicae)26. Beide Arten wurden in Taiwan27 gemeldet, und es ist möglich, dass sie an der Sammelstelle koexistieren. Zur Unterscheidung eng verwandter Blattlausarten wurde in dieser Studie eine molekulare Identifizierungstechnik unter Verwendung eines Multiplex-Primer-Sets21<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde durch 109-2313-B-005 -048 -MY3 vom Ministerium für Wissenschaft und Technologie (MOST) unterstützt.

Materials

10 μL Inoculating Loop NEST Scientific 718201
100 bp DNA Ladder III Geneaid DL007
2x SuperRed PCR Master Mix Biotools TE-SR01
50 mL centrifuge tube Bioman Scientific ET5050-12
6 cm Petri dish Alpha Plus Scientific 16021
6 mm insect aspirator MegaView Science BA6001
70 mm filter paper NO.1 Toyo Roshi Kaisha
70% ethanol
9 cm Petri dish Alpha Plus Scientific 16001
Agar Bioman Scientific AGR001.1 Microbiology grade
Agarose Bioman Scientific PB1200
BioGreen Safe DNA Gel Buffer Bioman Scientific SDB001T
Chromas Technelysium
GeneDoc
GenepHlow Gel/PCR Kit Geneaid DFH300 https://www.geneaid.com/data/files/1605861013102532959.pdf
Gene-Spin Genomic DNA Isolation Kit Protech Technology PT-GD112-V3 http://www.protech-bio.com/UserFiles/file/Gene-Spin%20Genomic%20DNA%20Kit.pdf
Hemocytometer Paul Marienfeld 640030
Komatsuna leaves (Brassica rapa var. perviridis) Tai Cheng Farm 1-010-300410
Microsprayer
MiniAmp Thermal Cycler Thermo Fisher Scientific A37834
Mustard aphid (Lipaphis erysimi)
Painting brush Tian Cheng brush company 4716608400352
Parafilm M Bemis PM-996
Pellet pestle Bioman Scientific GT100R
Sabouraud Dextrose Broth HiMedia MH033-500G
SPSS Statistics IBM
TAE buffer 50x Bioman Scientific TAE501000
Tween 80 PanReac AppliChem 142050.1661

References

  1. Ghosh, S., Roy, A., Chatterjee, A., Sikdar, S. R. Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over indo-gangetic plain. Scientific Reports. 9, 5626 (2019).
  2. Dhillon, M. K., Singh, N., Yadava, D. K. Preventable yield losses and management of mustard aphid, Lipaphis erysimi (Kaltenbach) in different cultivars of Brassica juncea(L.) Czern & Coss. Crop Protection. 161, 106070 (2022).
  3. Huang, F., Hao, Z., Yan, F. Influence of oilseed rape seed treatment with imidacloprid on survival, feeding behavior, and detoxifying enzymes of mustard aphid, lipaphis erysimi. Insects. 10 (5), 144 (2019).
  4. Mannino, M. C., Huarte-Bonnet, C., Davyt-Colo, B., Pedrini, N. Is the insect cuticle the only entry gate for fungal infection? insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi. 5 (2), 33 (2019).
  5. Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: prospects, challenges, and insights for next-generation sustainable agriculture. Frontiers in Plant Science. 12, 741804 (2021).
  6. Scorsetti, A. C., Humber, R. A., Garcia, J. J., Lopez Lastra, C. C. Natural occurrence of entomopathogenic fungi (Zygomycetes: Entomophthorales) of aphid (Hemiptera: Aphididae) pests of horticultural crops in Argentina. Biocontrol. 52, 641-655 (2007).
  7. Liu, Y. C., Ni, N. T., Chang, J. C., Li, Y. H., Lee, M. R., Kim, J. S., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  8. Francis, F., Fingu-Mabola, J. C., Fekih, I. B. Direct and endophytic effects of fungal entomopathogens for sustainable aphid control: a review. Agriculture. 12 (12), 2081 (2022).
  9. Simon, J., Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science. 26, 17-24 (2018).
  10. Ujjan, A. A., Shahzad, S. Use of Entomopathogenic Fungi for the Control of Mustard Aphid (Lipaphis erysimi) on canola (Brassica napus L). Pakistan Journal of Botany. 44 (6), 2081-2086 (2012).
  11. Sajid, M., Bashir, N. H., Batool, Q., Munir, I., Bilal, M., Jamal, M. A., et al. In-vitro evaluation of biopesticides (Beauveria bassiana, Metarhizium anisopliae, Bacillus thuringiensis) against mustard aphid Lipaphis erysimi kalt. (Hemiptera: Aphididae). Journal of Entomology and Zoology Studies. 5 (6), 331-335 (2017).
  12. Paschapur, A. U., Subbanna, A. R. N. S., Singh, A. K., Jeevan, B., Stanley, J., Rajashekara, H., Mishra, K. K., Koti, P. S., Kant, L., Pattanayak, A. Alternaria alternata strain VLH1: a potential entomopathogenic fungus native to North Western Indian Himalayas. Egyptian Journal of Biological Pest Control. 32, 138 (2022).
  13. Miohammed, A. A. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. Biocontrol. 63, 277-287 (2018).
  14. Thaochan, N., Ngampongsai, A., Prabhakar, C. S., Hu, Q. Beauveria bassiana PSUB01 simultaneously displays biocontrol activity against Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) and promotes plant growth in Chinese kale under hydroponic growing conditions. Biocontrol Science and Technology. 31 (10), 997-1015 (2021).
  15. Mseddi, J., Farhat-Touzri, D. B., Azzouz, H. Selection and characterization of thermotolerant Beauveria bassiana isolates and with insecticidal activity against the cotton-melon aphid Aphis gossypii (Glover) (Hemiptera: Aphididae). Pest Management Science. 78 (6), 2183-2195 (2022).
  16. Butt, T. M., Ibrahim, L., Clark, S. J., Beckett, A. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycological Research. 99 (8), 945-950 (1995).
  17. Ullah, S., Raza, A. B. M., Alkafafy, M., Sayed, S., Hamid, M. I., Majeed, M. Z., Riaz, M. A., Gaber, N. M., Asim, M. Isolation, identification and virulence of indigenous entomopathogenic fungal strains against the peach-potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 32, 2 (2022).
  18. Yokomi, R. K., Gottwald, T. R. Virulence of Verticillium lecanii Isolates in Aphids Determined by Detached-leaf Bioassay. Journal of Inbertebrate Pathology. 51, 250-258 (1988).
  19. Vu, V. H., Hong, S. I., Kim, K. Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering. 104 (6), 498-505 (2007).
  20. Vandenberg, J. D. Standardized bioassay and screening of beauveria bassiana and paecilomyces fumosoroseus against the russian wheat aphid (homoptera: aphididae). Journal of Economic Entomology. 89 (6), 1418-1423 (1996).
  21. Lu, W. N., Wu, Y. T., Kuo, M. H. Development of species-specific primers for the identification of aphids in Taiwan. Applied Entomology and Zoology. 43 (1), 91-96 (2008).
  22. Liu, Y. C., et al. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. Journal of Visualized Experiments. 175, e62882 (2021).
  23. Menger, J., Beauzay, P., Chirumamilla, A., Dierks, C., Gavloski, J., Glogoza, P., et al. Implementation of a diagnostic-concentration bioassay for detection of susceptibility to pyrethroids in soybean aphid (hemiptera: aphididae). Journal of Economic Entomology. 113 (2), 932-939 (2020).
  24. Zhang, R., Chen, J., Jiang, L., Qiao, G. The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Scientific Reports. 9, 4754 (2019).
  25. Abbott, W. S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18, 265-267 (1925).
  26. Liu, T. X., Sparks, A. N. . Aphids on Cruciferous Crops: Identification and Management. , 9-11 (2001).
  27. Kuo, M., Chianglin, H. Temperature dependent life table of brevicoryne brassicae (l.)(hemiptera: aphididae) on radish. Formosan Entomologist. 27, 293-302 (2007).
  28. Im, Y., Park, S., Lee, S. Y., Kim, J., Kim, J. J. Early-Stage defense mechanism of the cotton aphid aphis gossypii against infection with the insect-killing fungus beauveria bassiana JEF-544. Frontiers in Immunology. 13, 907088 (2022).
  29. Kim, J. J., Roberts, D. W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontrol Science and Technology. 22 (3), 319-331 (2012).
  30. Reingold, V., Kottakota, C., Birnbaum, N., Goldenberg, M., Lebedev, G., Ghanim, M., et al. Intraspecies variation ofMetarhiziumbrunneumagainst the green peach aphid,Myzus persicae, provides insight into thecomplexity of disease progression. Pest Management Science. 77, 2557-2567 (2021).
  31. Ortiz-Urquiza, A., Keyhani, N. O. Action on the Surface: entomopathogenic fungi versus the insect cuticle. Insects. 4, 357-374 (2013).
  32. Knodel, J. J., Beauzay, P., Boetel, M., Prochaska, T., Chirumamilla, A. . 2022 North Dakota Field Crop Insect Management Guide. , (2021).
  33. Yeo, H., Pell, J. K., Alderson, P. G., Clark, S. J., Pye, B. J. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Management Science. 59 (2), 156-165 (2003).
  34. Erdos, Z., Chandler, D., Bass, C., Raymond, B. Controlling insecticide resistant clones of the aphid, Myzus persicae, using the entomopathogenic fungus Akanthomyces muscarius: fitness cost of resistance under pathogen challenge. Pest Management Science. 77 (11), 5286-5293 (2021).
check_url/65312?article_type=t

Play Video

Cite This Article
Yang, C., Nai, Y. Assessment of Aphidicidal Effect of Entomopathogenic Fungi against Parthenogenetic Insect, Mustard Aphid, Lipaphis erysimi (Kalt.). J. Vis. Exp. (197), e65312, doi:10.3791/65312 (2023).

View Video