Summary

Подготовка ex vivo среза спинного мозга для регистрации цельноклеточного патча-зажима в двигательных нейронах при стимуляции спинного мозга

Published: September 08, 2023
doi:

Summary

Этот протокол описывает метод с использованием патч-зажима для изучения электрических реакций двигательных нейронов на стимуляцию спинного мозга (SCS) с высоким пространственно-временным разрешением, который может помочь исследователям улучшить свои навыки в разделении спинного мозга и поддержании жизнеспособности клеток одновременно.

Abstract

Стимуляция спинного мозга (СКС) может эффективно восстановить локомоторную функцию после травмы спинного мозга (ТСМ). Поскольку двигательные нейроны являются конечной единицей для выполнения сенсомоторного поведения, непосредственное изучение электрических реакций двигательных нейронов с помощью SCS может помочь нам понять логику, лежащую в основе спинномозговой моторной модуляции. Для одновременной регистрации различных характеристик стимулов и клеточных реакций патч-зажим является хорошим методом изучения электрофизиологических характеристик в масштабе одной клетки. Тем не менее, все еще существуют некоторые сложные трудности в достижении этой цели, включая поддержание жизнеспособности клеток, быстрое отделение спинного мозга от костной структуры и использование SCS для успешного индуцирования потенциалов действия. В данной работе мы представляем подробный протокол с использованием патч-зажима для изучения электрических реакций двигательных нейронов на СКС с высоким пространственно-временным разрешением, который может помочь исследователю улучшить свои навыки по разделению спинного мозга и поддержанию жизнеспособности клеток, чтобы беспрепятственно изучить электрический механизм СКС на двигательном нейроне и избежать ненужных проб и ошибок.

Introduction

Стимуляция спинного мозга (СКС) может эффективно восстановить локомоторную функцию после травмы спинного мозга (ТСМ). Andreas Rowald et al. сообщили, что SCS обеспечивает функцию опорно-двигательного аппарата и туловища нижних конечностей в течение одного дня1. Изучение биологического механизма СКС для восстановления опорно-двигательного аппарата является важной и актуальной областью исследований для разработки более точной стратегии СКС. Например, команда Грегуара Куртина продемонстрировала, что возбуждающий интернейрон Vsx2 и нейроны Hoxa10 в спинном мозге являются ключевыми нейронами для ответа на SCS, а клеточно-специфическая нейромодуляция возможна для восстановления способности крыс ходить после ТСМ2. Тем не менее, лишь немногие исследования сосредоточены на электрическом механизме СКС в масштабе одной клетки. Хотя хорошо известно, что надпороговый стимул постоянным током может вызывать потенциалы действия (ОП) в классическом эксперименте с кальмарами 3,4,5, до сих пор неясно, как импульсная переменная электрическая стимуляция, такая как СКС, влияет на генерацию двигательного сигнала.

Учитывая сложность интраспинальных нейронных цепей, для исследования электрического механизма СКС важен соответствующий отбор клеточной популяции. Несмотря на то, что СКС восстанавливает двигательную функцию, активируя проприоцептивный путь6, двигательные нейроны являются последней единицей для выполнения двигательной команды, полученной путем интеграции афферентного входа7 проприоцептивной информации. Таким образом, непосредственное изучение электрических характеристик двигательных нейронов с помощью СКС может помочь нам понять логику, лежащую в основе спинальной моторной модуляции.

Как известно, патч-клам является золотым стандартом клеточной электрофизиологической регистрации с чрезвычайно высоким пространственно-временным разрешением8. Поэтому в данной работе описан метод с использованием патч-зажима для изучения электрических реакций двигательных нейронов на СКС. По сравнению с головным мозгом, патч-зажим9 является более сложным по следующим причинам: (1) Спинной мозг защищен позвоночным каналом с крошечным объемом, который требует очень тонких микроманипуляций и строгого ледяного поддержания для достижения лучшей жизнеспособности клеток. (2) Поскольку спинной мозг слишком тонкий, чтобы его можно было закрепить на лотке для резки, его следует погрузить в агарозу с низкой температурой плавления и обрезать после затвердевания.

Таким образом, этот метод дает технические возможности в рассечении спинного мозга и одновременном поддержании жизнеспособности клеток, чтобы плавно изучить электрический механизм СКС на двигательных нейронах и избежать ненужных проб и ошибок.

Protocol

Институциональный комитет по уходу за животными и их использованию одобрил все эксперименты на животных, и исследования были проведены в соответствии с соответствующими правилами защиты животных. 1. Подготовка животных ЖивотныеИнформация о содержан?…

Representative Results

Благодаря строгому низкотемпературному поддержанию во время тонкой работы (дополнительный рисунок 1, дополнительный рисунок 2 и рисунок 1) жизнеспособность ячейки была достаточно хорошей, чтобы выполнять последующие электрофизиологические записи. Чтобы макс?…

Discussion

Информация о движении, модулированная СКС, наконец, конвергентна к двигательным нейронам. Таким образом, использование двигательных нейронов в качестве объекта исследования может упростить дизайн исследования и более непосредственно раскрыть механизм нейромодуляции СКС. Для одновр?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Это исследование финансировалось Национальным фондом естественных наук Китая для молодых ученых (52207254 и 82301657) и Китайским фондом постдокторантуры (2022M711833).

Materials

Adenosine 5’-triphosphate magnesium salt Sigma A9187
Ascorbic Acid Sigma A4034
CaCl2·2H2O Sigma C5080
Choline Chloride Sigma C7527
Cover slide tweezers VETUS 36A-SA Clip a slice
D-Glucose Sigma G8270
EGTA Sigma E4378
Fine scissors RWD Life Science S12006-10 Cut the diaphragm
Fluorescence Light Source Olympus  U-HGLGPS
Fluoro-Gold Fluorochrome Fluorochrome Label the motor neuron
Guanosine 5′-triphosphate sodium salt hydrate Sigma G8877
HEPES Sigma H3375
infrared CCD camera Dage-MTI IR-1000E
KCl Sigma P5405
K-gluconate Sigma P1847
Low melting point agarose Sigma A9414
MgSO4·7H2O Sigma M2773
Micromanipulator  Sutter Instrument  MP-200
Micropipette puller Sutter instrument P1000
Micro-scissors  Jinzhong wa1020 Laminectomy
Microscope for anatomy Olympus  SZX10
Microscope for ecletrophysiology Olympus  BX51WI
Micro-toothed tweezers RWD Life Science F11008-09 Lift the cut vertebral body
NaCl Sigma S5886
NaH2PO4 Sigma S8282
NaHCO3 Sigma V900182
Na-Phosphocreatine Sigma P7936
Objective lens for ecletrophysiology Olympus  LUMPLFLN60XW working distance 2 mm 
Osmometer  Advanced  FISKE 210
Patch-clamp amplifier  Axon  Multiclamp 700B
Patch-clamp digitizer Axon  Digidata 1550B
pH meter  Mettler Toledo  FE28
Slice Anchor Multichannel system SHD-27H
Spinal cord stimulatior PINS T901
Toothed tweezer RWD Life Science F13030-10 Lift the xiphoid
Vibratome Leica VT1200S
Wide band ultraviolet excitation filter Olympus  U-MF2

References

  1. Rowald, A., et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine. 28 (2), 260-271 (2022).
  2. Kathe, C., et al. The neurons that restore walking after paralysis. Nature. 611 (7936), 540-547 (2022).
  3. Smith, S. J., Buchanan, J., Osses, L. R., Charlton, M. P., Augustine, G. J. The spatial distribution of calcium signals in squid presynaptic terminals. The Journal of Physiology. 472, 573-593 (1993).
  4. Augustine, G. J. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. The Journal of Physiology. 431, 343-364 (1990).
  5. Llinás, R., McGuinness, T. L., Leonard, C. S., Sugimori, M., Greengard, P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proceedings of the National Academy of Sciences of the United States of America. 82 (9), 3035-3039 (1985).
  6. Formento, E., et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience. 21 (12), 1728-1741 (2018).
  7. Hari, K., et al. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nature Neuroscience. 25 (10), 1288-1299 (2022).
  8. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annual Review Of Physiology. 46, 455-472 (1984).
  9. Leroy, F., Lamotte d’Incamps, B. The preparation of oblique spinal cord slices for ventral root stimulation. Journal of Visualized Experiments:JoVE. (116), e54525 (2016).
  10. Sharples, S. A., Miles, G. B. Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development. Elife. 10, e71385 (2021).
  11. Bhumbra, G. S., Beato, M. Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic. PLoS Biology. 16 (3), e2003586 (2018).
  12. Leroy, F., Lamotte d’Incamps, B., Imhoff-Manuel, R. D., Zytnicki, D. Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. Elife. 3, 04046 (2014).
  13. Tahir, R. A., Pabaney, A. H. Therapeutic hypothermia and ischemic stroke: A literature review. Surgical Neurology International. 7, S381-S386 (2016).
  14. Lu, Y., et al. Management of intractable pain in patients with implanted spinal cord stimulation devices during the COVID-19 pandemic using a remote and wireless programming system. Frontiers in Neuroscience. 14, 594696 (2020).
  15. Yao, Q., et al. Wireless epidural electrical stimulation in combination with serotonin agonists improves intraspinal metabolism in spinal cord injury rats. Neuromodulation. 24 (3), 416-426 (2021).
  16. Arlotti, M., Rahman, A., Minhas, P., Bikson, M. Axon terminal polarization induced by weak uniform dc electric fields: a modeling study. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , 4575-4578 (2012).
  17. Espino, C. M., et al. Na(V)1.1 is essential for proprioceptive signaling and motor behaviors. Elife. 11, e79917 (2022).
  18. Romer, S. H., Deardorff, A. S., Fyffe, R. E. W. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons. The Journal of Physiology. 597 (14), 3769-3786 (2019).
  19. Yao, X., et al. Structures of the R-type human Ca(v)2.3 channel reveal conformational crosstalk of the intracellular segments. Nature Communications. 13 (1), 7358 (2022).
  20. Bandres, M. F., Gomes, J., McPherson, J. G. Spontaneous multimodal neural transmission suggests that adult spinal networks maintain an intrinsic state of readiness to execute sensorimotor behaviors. Journal Of Neuroscience. 41 (38), 7978-7990 (2021).
  21. Manuel, M., Heckman, C. J. Simultaneous intracellular recording of a lumbar motoneuron and the force produced by its motor unit in the adult mouse in vivo. Journal of Visualized Experiments: JoVE. (70), e4312 (2012).
  22. Luo, X., Wang, S., Rutkove, S. B., Sanchez, B. Nonhomogeneous volume conduction effects affecting needle electromyography: an analytical and simulation study. Physiological Measurement. 42 (11), (2021).
  23. Barra, B., et al. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nature Neuroscience. 25 (7), 924-934 (2022).
  24. Powell, M. P., et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nature Medicine. 29 (3), 689-699 (2023).
  25. Wenger, N., et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine. 22 (2), 138-145 (2016).
  26. Özyurt, M. G., Ojeda-Alonso, J., Beato, M., Nascimento, F. In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice. Journal of Neurophysiology. 128 (3), 711-726 (2022).
  27. Moraud, E. M., et al. Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron. 89 (4), 814-828 (2016).
  28. Capogrosso, M., et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. Journal of Neuroscience. 33 (49), 19326-19340 (2013).
check_url/65385?article_type=t

Play Video

Cite This Article
Yao, Q., Luo, X., Liu, J., Li, L. The Ex vivo Preparation of Spinal Cord Slice for the Whole-Cell Patch-Clamp Recording in Motor Neurons During Spinal Cord Stimulation. J. Vis. Exp. (199), e65385, doi:10.3791/65385 (2023).

View Video