Summary

Une méthode améliorée pour isoler les sites de contact mitochondrial

Published: June 16, 2023
doi:

Summary

Les sites de contact mitochondrial sont des complexes protéiques qui interagissent avec les protéines membranaires internes et externes mitochondriales. Ces sites sont essentiels pour la communication entre les membranes mitochondriales et, par conséquent, entre le cytosol et la matrice mitochondriale. Nous décrivons ici une méthode permettant d’identifier les candidats éligibles à cette classe spécifique de protéines.

Abstract

Les mitochondries sont présentes dans pratiquement toutes les cellules eucaryotes et remplissent des fonctions essentielles qui vont bien au-delà de la production d’énergie, par exemple, la synthèse d’amas fer-soufre, de lipides ou de protéines, le tampon Ca2+ et l’induction de l’apoptose. De même, le dysfonctionnement mitochondrial entraîne des maladies humaines graves telles que le cancer, le diabète et la neurodégénérescence. Afin de remplir ces fonctions, les mitochondries doivent communiquer avec le reste de la cellule à travers leur enveloppe, qui se compose de deux membranes. Par conséquent, ces deux membranes doivent interagir constamment. Les sites de contact protéique entre les membranes interne et externe mitochondriales sont essentiels à cet égard. Jusqu’à présent, plusieurs sites de contact ont été identifiés. Dans la méthode décrite ici, les mitochondries de Saccharomyces cerevisiae sont utilisées pour isoler les sites de contact et, ainsi, identifier les candidats qui se qualifient pour les protéines de site de contact. Nous avons utilisé cette méthode pour identifier le complexe MICOS (MICOS) qui forme le site de contact mitochondrial et le système d’organisation des crêtes, l’un des principaux complexes formant des sites de contact dans la membrane interne mitochondriale, qui est conservé de la levure à l’homme. Récemment, nous avons encore amélioré cette méthode pour identifier un nouveau site de contact composé de Cqd1 et du complexe Por1-Om14.

Introduction

Les mitochondries remplissent une variété de fonctions différentes chez les eucaryotes, la plus connue étant la production d’ATP par phosphorylation oxydative. D’autres fonctions incluent la production d’amas fer-soufre, la synthèse des lipides et, chez les eucaryotes supérieurs, la signalisation Ca2+ et l’induction de l’apoptose 1,2,3,4. Ces fonctions sont indissociablement liées à leur ultrastructure complexe.

L’ultrastructure mitochondriale a été décrite pour la première fois par microscopie électronique5. Il a été montré que les mitochondries sont des organites assez complexes constitués de deux membranes : la membrane externe mitochondriale et la membrane interne mitochondriale. Ainsi, deux compartiments aqueux sont formés par ces membranes : l’espace intermembranaire et la matrice. La membrane interne mitochondriale peut être encore plus divisée en différentes sections. La membrane limite interne reste à proximité de la membrane externe et les crêtes forment des invaginations. Ce que l’on appelle des jonctions de crêtes relient la membrane limite interne et les crêtes (Figure 1). De plus, les micrographies électroniques de mitochondries osmotiquement rétrécies révèlent qu’il existe des sites où les membranes mitochondriales sont étroitement connectées 6,7. Ces sites dits de contact sont formés par des complexes protéiques qui s’étendent sur les deux membranes (Figure 1). On pense que ces sites d’interaction sont essentiels à la viabilité cellulaire en raison de leur importance pour la régulation de la dynamique et de l’hérédité mitochondriales, ainsi que pour le transfert de métabolites et de signaux entre le cytosol et la matrice8.

Le complexe MICOS dans la membrane interne mitochondriale est probablement le complexe de formation de site de contact le mieux caractérisé et le plus polyvalent. MICOS a été décrit dans la levure en 2011 et se compose de six sous-unités 9,10,1 1 : Mic60, Mic27, Mic26, Mic19, Mic12 et Mic10. Ceux-ci forment un complexe d’environ 1,5 MDa qui se localise aux jonctionsde crista 9,10,11. La délétion de l’une ou l’autre des sous-unités centrales, Mic10 ou Mic60, conduit à l’absence de ce complexe 9,11, ce qui signifie que ces deux sous-unités sont essentielles à la stabilité de MICOS. Il est intéressant de noter que MICOS forme non pas un, mais plusieurs sites de contact avec diverses protéines et complexes de la membrane externe mitochondriale : le complexe TOM 11,12, le complexe TOB/SAM 9,12,13,14,15,16, le complexe Fzo1-Ugo19,Por1 10, OM45 10 et Miro 17. Cela indique fortement que le complexe MICOS est impliqué dans divers processus mitochondriaux, tels que l’importation de protéines, le métabolisme des phospholipides et la génération de l’ultrastructure mitochondriale18. Cette dernière fonction est probablement la fonction majeure de MICOS, car l’absence du complexe MICOS induite par la délétion de MIC10 ou MIC60 conduit à une ultrastructure mitochondriale anormale qui est pratiquement complètement dépourvue de crêtes régulières. Au lieu de cela, les vésicules membranaires internes sans connexion à la membrane limite interne s’accumulent19, 20. Il est important de noter que MICOS est conservé dans sa forme et sa fonction de la levure à l’homme21. L’association de mutations dans les sous-unités MICOS avec des maladies humaines graves souligne également son importance pour les eucaryotes supérieurs22,23. Bien que MICOS soit très polyvalent, il doit exister d’autres sites de contact (sur la base de nos observations non publiées). En effet, plusieurs autres sites de contact ont été identifiés, par exemple, les machineries de fusion mitochondriale Mgm1-Ugo1/Fzo1 24,25,26 ou encore Mdm31-Por1, qui est impliquée dans la biosynthèse du phospholipide spécifique mitochondrial, cardiolipine 27. Récemment, nous avons amélioré la méthode qui nous a conduits à l’identification de MICOS pour identifier Cqd1 dans le cadre d’un nouveau site de contact formé avec le complexe membranaire externe Por1-Om1428. Il est intéressant de noter que ce site de contact semble également être impliqué dans de multiples processus tels que l’homéostasie de la membrane mitochondriale, le métabolisme des phospholipides et la distribution de la coenzyme Q28,29.

Ici, nous avons utilisé une variante du fractionnement des mitochondries 9,30,31,32,33 décrit précédemment. Le traitement osmotique des mitochondries conduit à la perturbation de la membrane externe mitochondriale et à un rétrécissement de l’espace matriciel, ne laissant les deux membranes qu’à proximité sur les sites de contact. Cela permet de générer des vésicules qui se composent exclusivement de la membrane externe mitochondriale ou de la membrane interne mitochondriale ou des sites de contact contenus des deux membranes par sonication douce. En raison de la membrane interne mitochondriale possédant un rapport protéines/lipides beaucoup plus élevé, les vésicules de la membrane interne mitochondriale présentent une densité plus élevée que les vésicules de la membrane externe mitochondriale. La différence de densité peut être utilisée pour séparer les vésicules membranaires par centrifugation à gradient de densité flottante de saccharose. Ainsi, les vésicules de la membrane externe mitochondriale s’accumulent à de faibles concentrations de saccharose, tandis que les vésicules de la membrane interne mitochondriale sont enrichies à des concentrations élevées de saccharose. Les vésicules contenant des sites de contact se concentrent à des concentrations intermédiaires de saccharose (figure 2). Le protocole suivant décrit en détail cette méthode améliorée, qui nécessite moins d’équipement spécialisé, de temps et d’énergie par rapport à notre méthode précédemment établie32, et fournit un outil utile pour l’identification d’éventuelles protéines du site de contact.

Protocol

1. Tampons et solutions mères Préparez une solution d’acide 3-morpholinopropane-1-sulfonique (MOPS) de 1 M dans de l’eau déminéralisée, pH 7,4. Conserver à 4 °C. Préparer 500 mM d’acide éthylènediaminetétraacétique (EDTA) dans de l’eau déminéralisée, pH 8,0. Conserver à température ambiante. Préparez 2,4 M de sorbitol dans de l’eau déminéralisée. Conserver à température ambiante après l’autoclavage. Préparer 2,5 M de saccharose …

Representative Results

Il est relativement facile de séparer les membranes internes et externes des mitochondries. Cependant, la génération et la séparation des vésicules contenant le site de contact sont beaucoup plus difficiles. À notre avis, deux étapes sont critiques et essentielles : les conditions de sonication et le gradient utilisé. Habituellement, on pense que les dégradés linéaires ont une meilleure résolution que les dégradés par étapes. Cependant, leur production reproductible est fastidie…

Discussion

Le subfractionnement mitochondrial est une expérience compliquée avec plusieurs étapes très complexes. C’est pourquoi nous avons cherché à améliorer et, dans une certaine mesure, à simplifier notre méthode établie32. Ici, les défis étaient la nécessité d’équipements compliqués et hautement spécialisés, qui sont souvent des constructions individuelles, et l’énorme consommation de temps et d’énergie. À cette fin, nous avons essayé de supprimer les pompes et les construc…

Disclosures

The authors have nothing to disclose.

Acknowledgements

M.E.H. remercie la Deutsche Forschungsgemeinschaft (DFG), projet numéro 413985647, pour son soutien financier. Les auteurs remercient le Dr Michael Kiebler, de l’Université Ludwig-Maximilians de Munich, pour son soutien généreux et étendu. Nous sommes reconnaissants à Walter Neupert pour sa contribution scientifique, ses discussions utiles et son inspiration continue. J.F. remercie la Graduate School Life Science Munich (LSM) pour son soutien.

Materials

13.2 mL, Open-Top Thinwall Ultra-Clear Tube, 14 x 89mm Beckman Instruments, Germany 344059
50 mL, Open-Top Thickwall Polycarbonate Open-Top Tube, 29 x 104mm Beckman Instruments, Germany 363647
A-25.50 Fixed-Angle Rotor- Aluminum, 8 x 50 mL, 25,000 rpm, 75,600 x g Beckman Instruments, Germany 363055
Abbe refractometer Zeiss, Germany discontinued,
any pipet controller will suffice
accu-jet pro Pipet Controller Brandtech, USA BR26320 discontinued,
any pipet controller will suffice
Beaker 1000 mL DWK Life Science, Germany C118.1
Branson  Digital Sonifier W-250 D Branson Ultrasonics, USA FIS15-338-125
Branson Ultrasonic 3mm TAPERED MICROTIP Branson Ultrasonics, USA 101-148-062
Branson Ultrasonics 200- and 400-Watt Sonifiers: Rosette Cooling Cell Branson Ultrasonics, USA 15-338-70
Centrifuge Avanti JXN-26 Beckman Instruments, Germany B37912
Centrifuge Optima XPN-100 ultra Beckman Instruments, Germany 8043-30-0031
cOmplete Proteaseinhibtor-Cocktail Roche, Switzerland 11697498001
D-Sorbit Roth, Germany 6213
EDTA (Ethylendiamin-tetraacetic acid disodium salt dihydrate) Roth, Germany 8043
Erlenmeyer flask, 100 mL Roth, Germany X747.1
graduated pipette, Kl. B, 25:0, 0.1 Hirschmann, Germany 1180170
graduated pipette, Kl. B, 5:0, 0.05 Hirschmann, Germany 1180153
ice bath neoLab, Germany  S12651
Magnetic stirrer RCT basic IKA-Werke GmbH, Germany Z645060GB-1EA
MOPS (3-(N-Morpholino)propanesulphonic acid) Gerbu, Germany 1081
MyPipetman Select P1000 Gilson, USA FP10006S
MyPipetman Select P20 Gilson, USA FP10003S
MyPipetman Select P200 Gilson, USA FP10005S
Omnifix 1 mL Braun, Germany 4022495251879
Phenylmethylsulfonyl fluoride (PMSF) Serva, Germany 32395.03
STERICAN cannula 21 Gx4 4/5 0.8×120 mm Braun, Germany 4022495052414
stirring bar, 15 mm VWR, USA 442-0366
Sucrose Merck, Germany S8501
SW 41 Ti Swinging-Bucket Rotor Beckman Instruments, Germany 331362
Test tubes Eppendorf, Germany 3810X
Tissue grinders, Potter-Elvehjem type, 2 mL glass vessel VWR, USA 432-0200
Tissue grinders, Potter-Elvehjem type, 2 mL plunger with serrated tip VWR, USA 432-0212
Trichloroacetic acid (TCA) Sigma Aldrich, Germany 33731 discontinued,
any TCA will suffice (CAS: 73-03-9)
TRIS Roth, Germany 4855

References

  1. Braymer, J. J., Freibert, S. A., Rakwalska-bange, M., Lill, R. BBA – Molecular Cell Research Mechanistic concepts of iron-sulfur protein biogenesis in Biology * General concepts of FeS protein biogenesis. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1868 (1), 118863 (2021).
  2. Osman, C., Merkwirth, C., Langer, T. Prohibitins and the functional compartmentalization of mitochondrial membranes. Journal of Cell Science. 122 (21), 3823-3830 (2009).
  3. Smaili, S. S., Hsu, Y., Youle, R. J., Russell, J. T. Mitochondria in Ca 2 %. Signaling and Apoptosis. Journal of Bioenergetics and Biomembranes. 32 (1), (2000).
  4. Rolland, S. G., Conradt, B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Current Opinion in Cell Biology. 22 (6), 852-858 (2011).
  5. Palade, G. E. An electron microscope study of the mitochondrial structure. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. 1 (4), 188-211 (1953).
  6. Hackenbrock, C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. The Journal of cell biology. 30 (2), 269-297 (1966).
  7. Hackenbrock, C. R. Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proceedings of the National Academy of Sciences of the United States of America. 61 (2), 598-605 (1968).
  8. Reichert, A. S., Neupert, W. Contact sites between the outer and inner membrane of mitochondria – Role in protein transport. Biochimica et Biophysica Acta – Molecular Cell Research. 1592 (1), 41-49 (2002).
  9. Harner, M., et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO Journal. 30 (21), 4356-4370 (2011).
  10. Hoppins, S., et al. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. Journal of Cell Biology. 195 (2), 323-340 (2011).
  11. vonder Malsburg, K., et al. Dual Role of Mitofilin in Mitochondrial Membrane Organization and Protein Biogenesis. Developmental Cell. 21 (4), 694-707 (2011).
  12. Bohnert, M., et al. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Molecular Biology of the Cell. 23 (20), 3948-3956 (2012).
  13. Darshi, M., et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining Crista integrity and mitochondrial function. Journal of Biological Chemistry. 286 (4), 2918-2932 (2011).
  14. Körner, C., et al. The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Molecular Biology of the Cell. 23 (11), 2143-2155 (2012).
  15. Xie, J., Marusich, M. F., Souda, P., Whitelegge, J., Capaldi, R. A. The mitochondrial inner membrane protein Mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Letters. 581 (18), 3545-3549 (2007).
  16. Zerbes, R. M., et al. Role of MINOS in mitochondrial membrane architecture: Cristae morphology and outer membrane interactions differentially depend on mitofilin domains. Journal of Molecular Biology. 422 (2), 183-191 (2012).
  17. Modi, S., et al. Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nature Communications. 10 (1), 4399 (2019).
  18. Khosravi, S., Harner, M. E. The MICOS complex, a structural element of mitochondria with versatile functions. Biological Chemistry. 401 (6-7), 765-778 (2020).
  19. John, G. B., et al. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Molecular Biology of the Cell. 16 (3), 1543-1554 (2005).
  20. Rabl, R., et al. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. Journal of Cell Biology. 185 (6), 1047-1063 (2009).
  21. Alkhaja, A. K., et al. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Molecular Biology of the Cell. 23 (2), 247-257 (2012).
  22. Eramo, M. J., Lisnyak, V., Formosa, L. E., Ryan, M. T. The "mitochondrial contact site and cristae organising system" (MICOS) in health and human disease. Journal of Biochemistry. 167 (3), 243-255 (2020).
  23. Ikeda, A., Imai, Y., Hattori, N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10-what distinguishes the two. Frontiers in Cell and Developmental Biology. 10, 1-12 (2022).
  24. Sesaki, H., Southard, S. M., Yaffe, M. P., Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Molecular Biology of the Cell. 14 (6), 2342-2356 (2003).
  25. Fritz, S., Rapaport, D., Klanner, E., Neupert, W., Westermann, B. Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. Journal of Cell Biology. 152 (4), 683-692 (2001).
  26. Wong, E. D., et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. Journal of Cell Biology. 160 (3), 303-311 (2003).
  27. Miyata, N., Fujii, S., Kuge, O. Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. Journal of Biological Chemistry. 293 (45), 17593-17605 (2018).
  28. Khosravi, S., et al. The UbiB family member Cqd1 forms a novel membrane contact site in mitochondria. J Cell Sci. , (2023).
  29. Kemmerer, Z. A., et al. UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. Nature Communications. 12 (1), 4769 (2021).
  30. Pon, L., Moll, T., Vestweber, D., Marshallsay, B., Schatz, G. Protein import into mitochondria: ATP-dependent protein translocation activity in a submitochondrial fraction enriched in membrane contact sites and specific proteins. Journal of Cell Biology. 109, 2603-2616 (1989).
  31. Lithgow, T., Timms, M., Hj, P. B., Hoogenraad, N. J. Identification of a GTP-binding protein in the contact sites between inner and outer mitochondrial membranes. Biochemical and Biophysical Research Communications. 180 (3), 1453-1459 (1991).
  32. Harner, M. Isolation of contact sites between inner and outer mitochondrial membranes. Methods in Molecular Biology. 1567, 43-51 (2017).
  33. Adams, V., Bosch, W., Schlegel, J., Wallimann, T., Brdiczka, D. Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. BBA – Biomembranes. 981 (2), 213-225 (1989).
  34. Izawa, T., Unger, A. K. Isolation of mitochondria from Saccharomyces cerevisiae. Methods in Molecular Biology. 1567, 33-42 (2017).
  35. Gregg, C., Kyryakov, P., Titorenko, V. I. Purification of mitochondria from yeast cells. Journal of Visualized Experiments. (30), 17-19 (2009).
  36. Beavis, A. D., Brannan, R. D., Garlid, K. D. Swelling and Contraction of the Mitochondrial Matrix I. A structural interpretation of the relationship between light scattering and matrix volume. Journal of Biological Chemistry. 260 (25), 13424-13433 (1985).
  37. Born, M., Wolf, E. . Principles of optics electromagnetic theory of propagation, interference and diffraction of light. , (1999).
  38. Koontz, L. TCA precipitation. Methods in Enzymology. 541, 3-10 (2014).
  39. Laemmli, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227, 680-685 (1970).
  40. Renart, J., Reiser, J., Stark, G. R. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: A method for studying antibody specificity and antigen structure. Proceedings of the National Academy of Sciences of the United States of America. 76 (7), 3116-3120 (1979).
  41. Al-Tubuly, A. A. SDS-PAGE and Western Blotting. Methods Mol Med. 40, 391-405 (2000).
  42. Kurien, B. T., Hal Scofield, R. Western blotting: Methods and protocols. Western Blotting: Methods and Protocols. (3), 1 (2015).
  43. Gallagher, S., Chakavarti, D. Immunoblot analysis. Journal of Visualized Experiments. (16), (2008).
  44. Sherman, F. Getting Started with Yeast. Methods in Enzymology. 194, 3-21 (1991).
  45. Howson, R., et al. Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comparative and Functional Genomics. 6 (1-2), 2-16 (2005).
  46. Knop, M., et al. Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines. Yeast. 15, 963-972 (1999).
  47. Longtine, M. S., et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14 (10), 953-961 (1998).
  48. Tsai, P. I., et al. PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Molecular Cell. 69 (5), 744-756 (2018).
  49. Xiao, T., et al. Identification of CHCHD10 Mutation in Chinese Patients with Alzheimer Disease. Molecular Neurobiology. 54 (7), 5243-5247 (2017).
  50. Bannwarth, S., et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 137 (8), 2329-2345 (2014).
  51. Chaussenot, A., et al. Screening of CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal dementia with amyotrophic lateral sclerosis patients. Neurobiology of Aging. 35 (12), 1-4 (2014).
  52. Chiò, A., et al. CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients. Neurobiology of Aging. 36 (4), 3-6 (2015).
  53. Genin, E. C., et al. CHCHD 10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Molecular Medicine. 8 (1), 58-72 (2016).
  54. Bannwarth, S., et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 137 (8), 2329-2345 (2014).
check_url/65444?article_type=t

Play Video

Cite This Article
Khosravi, S., Frickel, J., Harner, M. E. An Improved Method to Isolate Mitochondrial Contact Sites. J. Vis. Exp. (196), e65444, doi:10.3791/65444 (2023).

View Video