Summary

超快激光烧蚀纳米颗粒和纳米结构在基于表面增强拉曼散射的传感应用中的应用

Published: June 16, 2023
doi:

Summary

液体中的超快激光烧蚀是一种在液体/空气环境中合成纳米材料(纳米颗粒 [NPs] 和纳米结构 [NSs])的精确且通用的技术。激光烧蚀的纳米材料可以用拉曼活性分子进行功能化,以增强放置在NSs/NPs上或附近的分析物的拉曼信号。

Abstract

液体中的超快激光烧蚀技术在过去十年中不断发展和成熟,即将在传感、催化和医学等各个领域得到应用。该技术的特殊之处在于在超短激光脉冲的单个实验中形成纳米颗粒(胶体)和纳米结构(固体)。在过去的几年里,我们一直在研究这项技术,研究其在危险材料传感应用中使用表面增强拉曼散射(SERS)技术的潜力。超快激光烧蚀底物(固体和胶体)可以检测痕量水平/混合物形式的多种分析物分子,包括染料、炸药、杀虫剂和生物分子。在这里,我们介绍了使用Ag、Au、Ag-Au和Si靶材取得的一些结果。我们使用不同的脉冲持续时间、波长、能量、脉冲形状和书写几何形状优化了获得的纳米结构 (NS) 和纳米颗粒 (NPs)(在液体和空气中)。因此,使用简单、便携的拉曼光谱仪测试了各种 NS 和 NP 在检测多种分析物分子方面的效率。这种方法一旦得到优化,将为现场传感应用铺平道路。我们讨论了 (a) 通过 激光烧蚀合成 NPs/NSs,(b) NPs/NSs 的表征,以及 (c) 它们在基于 SERS 的传感研究中的应用。

Introduction

超快激光烧蚀是一个快速发展的激光-材料相互作用领域。脉冲持续时间在飞秒 (fs) 至皮秒 (ps) 范围内的高强度激光脉冲用于产生精确的材料烧蚀。与纳秒 (ns) 激光脉冲相比,ps 激光脉冲由于脉冲持续时间较短,可以以更高的精度和准确度烧蚀材料。由于较少的热效应,它们可以产生较少的附带损坏、碎屑和烧蚀材料污染。然而,ps激光器通常比ns激光器更昂贵,并且需要专业知识进行操作和维护。超快的激光脉冲能够精确控制能量沉积,从而对周围材料造成高度局部化和最小的热损伤。此外,超快激光烧蚀可以产生独特的纳米材料(即,在纳米材料的生产过程中,表面活性剂/封盖剂不是强制性的)。因此,我们可以将其称为绿色合成/制造方法1,2,3超快激光烧蚀的机制错综复杂。该技术涉及不同的物理过程,例如 (a) 电子激发、(b) 电离和 (c) 产生致密等离子体,这导致材料从表面喷射出来4.激光烧蚀是一种简单的单步工艺,可生产具有高产量、窄尺寸分布和纳米结构 (NS) 的纳米颗粒 (NP)。Naser等5对激光烧蚀法影响NPs合成和生产的因素进行了详细综述。该综述涵盖了多个方面,例如激光脉冲的参数、聚焦条件和烧蚀介质。该综述还讨论了它们对使用液体激光烧蚀(LAL)方法生产各种NP的影响。激光烧蚀纳米材料是很有前途的材料,在催化、电子、传感、生物医学等各个领域都有应用,水分解应用678910、11、121314

表面增强拉曼散射 (SERS) 是一种强大的分析传感技术,可显著增强吸附在金属 NS/NP 上的探针/分析物分子的拉曼信号。 SERS 基于金属 NPs/NS 中表面等离子体共振的激发,这导致金属纳米特征附近的局部电磁场显着增加。这种增强的场与吸附在表面的分子相互作用,显著增强了拉曼信号。该技术已用于检测各种分析物,包括染料、炸药、杀虫剂、蛋白质、DNA 和药物15,16,17。近年来,SERS衬底的开发取得了重大进展,包括使用不同形状的金属NPs 18,19(纳米棒,纳米星和纳米线),混合NSs20,21(金属与其他材料的组合,如Si22,23,GaAs 24,Ti 25,石墨烯26,MOS 227,Fe 28等),以及柔性基材29,30(纸、布、纳米纤维等)。在基板中开发这些新策略为在各种实时应用中使用SERS开辟了新的可能性。

该协议讨论了使用不同波长的ps激光制造Ag NPs和在蒸馏水中使用激光烧蚀技术制造的Ag-Au合金NPs(具有不同比例的Ag和Au靶材)。此外,硅微/纳米结构是使用飞秒激光在空气中的硅上创建的。采用紫外(UV)-可见光吸收、透射电子显微镜(TEM)、X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)对NPs和NSs进行了表征。此外,还讨论了SERS底物和分析物分子的制备,然后收集了分析物分子的拉曼光谱和SERS光谱。进行数据分析以确定激光烧蚀NPs/NS作为电位传感器的增强因子、灵敏度和可重复性。此外,还讨论了典型的SERS研究,并评估了混合基板的SERS性能。具体来说,已经发现,通过使用激光结构的硅而不是普通表面(如硅/玻璃)作为基础,有前途的金纳米星的SERS灵敏度可以提高约21倍。

Protocol

图1A显示了超快烧蚀NPs或NSs在通过SERS对分子进行痕量检测中的应用的典型方案流程图。 1. 金属NPs/NSs的合成 注意: 根据要求/应用,选择目标材料、周围液体和激光烧蚀参数。这里:靶材:银周围液体:10 mL 去离子激光参数:355/532/1064 nm;30 ps;10赫兹;15毫焦耳对焦镜头:平凸透镜(焦距:10cm)载物?…

Representative Results

在液体技术中 通过 ps激光烧蚀合成了银NPs。在这里,使用了脉冲持续时间为 ~30 ps、重复频率为 10 Hz、波长为 355、532 或 1,064 nm 之一的 ps 激光系统。输入脉冲能量调整为15 mJ。使用焦距为 10 cm 的平凸透镜聚焦激光脉冲。在激光烧蚀过程中,激光焦点应精确地位于材料表面,因为激光能量最集中在焦点上,在那里它会导致所需的材料去除。如果激光焦点不在材料表面,则激光能量分布在较大?…

Discussion

在超声波清洗中,将要清洗的材料浸入液体中,并使用超声波清洗机将高频声波施加到液体中。声波导致液体中微小气泡的形成和内爆,产生强烈的局部能量和压力,从而去除材料表面的污垢和其他污染物。在激光烧蚀中,使用布鲁斯特偏振器和半波板组合来调谐激光能量;偏振片通常放置在半波板之前。偏振器安装在旋转支架上,仅允许特定偏振的光波通过,同时反射垂直偏振的光波。然后通过…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢海得拉巴大学通过杰出学院 (IoE) 项目 UOH/IOE/RC1/RC1-2016 提供的支持。万物互联拨款获得了印度MHRD的通知F11/9/2019-U3(A)。印度DRDO通过ACRHEM([[#ERIP/ER/1501138/M/01/319/D(R&D)]获得资金支持。我们感谢 UoH 物理学院的 FESEM 表征和 XRD 设施。我们衷心感谢SVS Nageswara Rao教授及其团队的宝贵合作、贡献和支持。我们要感谢过去和现在的实验室成员 P Gopala Krishna 博士、Hamad Syed 博士、Chandu Byram 博士、S Sampath Kumar 先生、Ch Bindu Madhuri 女士、Reshma Beeram 女士、A Mangababu 先生和 K Ravi Kumar 先生在实验室激光烧蚀实验期间和之后的宝贵支持和帮助。我们感谢印度理工学院坎普尔分校的Prabhat Kumar Dwivedi博士的成功合作。

Materials

Alloys Local goldsmith N/A 99% pure
Axicon Thorlabs N/A 100, IR range, AR coated, AX1210-B
Ethanol Supelco, India CAS No. 64-17-5
Femtosecond laser femtosecond  (fs)  laser amplifier  Libra HE, Coherent N/A Pulse duraction 50 fs;
wavelenngth 800 nm;
Rep rate 1 KHz;
Pulse Energy: 4 mJ
FESEM Carl ZEISS, Ultra 55 N/A
Gatan DM3 www.gatan.com Gatan Microscopy Suite 3.x
Gold target  Sigma-Aldrich, India 99% pure
HAuCl4.3H2O Sigma-Aldrich, India CAS No. 16961-25-4
High resolution translational stages Newport SPECTRA PHYSICS GMBI N/A M-443 High-Performance Low-Profile Ball Bearing Linear Stage;
The stage is only 1 inch high, and has 2 inches of travel. 
Micro Raman Horiba LabRAM N/A Grating-1,800 and 600 grooves/mm;
Wavelength of excitation-785 nm,632 nm, 532 nm, 325 nm;
Objectives 10x, 20x, 50 x, 100x;
CCD detector
Mirrors Edmund Optics N/A Suitable mirrors for specific wavelength of laser
Motion controller NEWPORT SPECTRA PIYSICS GMBI N/A ESP300 Controller-3 axes control
Origin www.originlab.com Origin 2018
Picosecond laser EKSPLA 2251 N/A Pulse duraction 30ps;
wavelenngth 1064 nm, 532 nm, 355 nm;
Rep rate 10 Hz;
Pulse Energy: 1.5 to 30 mJ
Planoconvex lens N/A focal length 10 cm
Raman portable i-Raman plus,  B&W Tek, USA N/A 785 nm, ~ 100 µm laser spot  fiber optic probe excitation and collection
Silicon wafer Macwin India Ltd. 1–10 Ω-cm, p (100)-type
Silver salt (AgNO3) Finar, India CAS No. 7783-90-6 
Silver target Sigma-Aldrich, India CAS NO 7440-22-4 99% pure
TEM Tecnai TEM N/A
TEM grids Sigma-Aldrich, India TEM-CF200CU Copper Grid Carbon Coated  200 mesh
Thiram Sigma-Aldrich, India CAS No. 137-26-8
UV Jasco V-670 N/A
XRD Bruker D8 advance N/A

References

  1. Theerthagiri, J., et al. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo-and electrocatalytic applications. Light: Science & Applications. 11 (1), 250 (2022).
  2. Byram, C., et al. Review of ultrafast laser ablation for sensing and photonic applications. Journal of Optics. 25, 043001 (2023).
  3. Barcikowski, S., et al. . Handbook of laser synthesis of colloids. , (2016).
  4. Pariz, I., Goel, S., Nguyen, D. T., Buckeridge, J., Zhou, X. A critical review of the developments in molecular dynamics simulations to study femtosecond laser ablation. Materials Today: Proceedings. 64 (3), 1339-1348 (2022).
  5. Naser, H., et al. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. Journal of Nanoparticle Research. 21, 249 (2019).
  6. Zhang, D., Wada, H. Laser ablation in liquids for nanomaterial synthesis and applications. Handbook of Laser Micro-and Nano-Engineering. , 1-35 (2020).
  7. Yang, G. W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science. 52 (4), 648-698 (2007).
  8. Yu, J., et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform. ACS Applied Materials & Interfaces. 14 (38), 43877-43885 (2022).
  9. Obilor, A. F., Pacella, M., Wilson, A., Silberschmidt, V. V. Micro-texturing of polymer surfaces using lasers: A review. The International Journal of Advanced Manufacturing Technology. 120 (1-2), 103-135 (2022).
  10. Beeram, R., Soma, V. R. Ultra-trace detection of diverse analyte molecules using femtosecond laser structured Ag-Au alloy substrates and SERRS. Optical Materials. 137, 113615 (2023).
  11. Yu, Y., Lee, S. J., Theerthagiri, J., Lee, Y., Choi, M. Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Applied Catalysis B: Environmental. 316, 121603 (2022).
  12. Yu, Y., et al. Integrated technique of pulsed laser irradiation and sonochemical processes for the production of highly surface-active NiPd spheres. Chemical Engineering Journal. 411, 128486 (2021).
  13. Yu, Y., et al. Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and non-enzymatic sensor. Chemical Engineering Journal. 435, 134790 (2022).
  14. Shreyanka, S. N., Theerthagiri, J., Lee, S. J., Yu, Y., Choi, M. Y. Multiscale design of 3D metal-organic frameworks (M−BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. Chemical Engineering Journal. 446, 137045 (2022).
  15. Atta, S., Vo-Dinh, T. Ultra-trace SERS detection of cocaine and heroin using bimetallic gold-silver nanostars (BGNS-Ag). Analytica Chimica Acta. 1251, 340956 (2023).
  16. Mandal, P., Tewari, B. S. Progress in surface enhanced Raman scattering molecular sensing: A review. Surfaces and Interfaces. 28, 101655 (2022).
  17. Anh, N. H., et al. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Advances. 12 (18), 10950-10988 (2022).
  18. Zhao, Z., et al. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for ex situ detection of glucose and lactate in sweat. Sensors and Actuators B: Chemical. 353, 131154 (2022).
  19. Chung, T., Lee, S. -. H. Quantitative study of plasmonic gold nanostar geometry toward optimal SERS detection. Plasmonics. 17 (5), 2113-2121 (2022).
  20. Mangababu, A., et al. Gold nanoparticles decorated GaAs periodic surface nanostructures for trace detection of RDX and tetryl. Surfaces and Interfaces. 36, 102563 (2023).
  21. Kang, H. -. S., et al. High-index facets and multidimensional hotspots in Au-decorated 24-faceted PbS for ultrasensitive and recyclable SERS substrates. Journal of Materials Chemistry C. 10 (3), 958-968 (2022).
  22. Chirumamilla, A., et al. Lithography-free fabrication of scalable 3D nanopillars as ultrasensitive SERS substrates. Applied Materials Today. 31, 101763 (2023).
  23. Meyer, S. M., Murphy, C. J. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. Nanoscale. 14 (13), 5214-5226 (2022).
  24. Mangababu, A., et al. Multi-functional gallium arsenide nanoparticles and nanostructures fabricated using picosecond laser ablation. Applied Surface Science. 589, 152802 (2022).
  25. Krajczewski, J., et al. The battle for the future of SERS – TiN vs Au thin films with the same morphology. Applied Surface Science. 618, 156703 (2023).
  26. Naqvi, T. K., et al. Hierarchical laser-patterned silver/graphene oxide hybrid SERS sensor for explosive detection. ACS Omega. 4 (18), 17691-17701 (2019).
  27. Song, X., et al. Vertically aligned Ag-decorated MoS2 nanosheets supported on polyvinyl alcohol flexible substrate enable high-sensitivity and self-cleaning SERS devices. Journal of Environmental Chemical Engineering. 11 (2), 109437 (2023).
  28. Byram, C., Moram, S. S. B., Rao, S. V. Femtosecond laser-patterned and Au-coated iron surfaces as SERS platforms for multiple analytes detection. 2019 Workshop on Recent Advances in Photonics (WRAP). IEEE. , 1-3 (2019).
  29. Yao, H., et al. Functional cotton fabric-based TLC-SERS matrix for rapid and sensitive detection of mixed dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 280, 121464 (2022).
  30. Bharati, M. S. S., Soma, V. R. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electronic Advances. 4 (11), 210048 (2021).
  31. Banerjee, D., Akkanaboina, M., Kanaka, R. K., Soma, V. R. Femtosecond Bessel beam induced ladder-like LIPSS on trimetallic surface for SERS-based sensing of Tetryl and PETN. Applied Surface Science. 616, 156561 (2023).
  32. Moram, S. S. B., Byram, C., Shibu, S. N., Chilukamarri, B. M., Soma, V. R. Ag/Au nanoparticle-loaded paper-based versatile surface-enhanced Raman spectroscopy substrates for multiple explosives detection. ACS Omega. 3 (7), 8190-8201 (2018).
  33. Byram, C., Rathod, J., Moram, S. S. B., Mangababu, A., Soma, V. R. Picosecond laser-ablated nanoparticles loaded filter paper for SERS-based trace detection of Thiram, 1, 3, 5-trinitroperhydro-1, 3, 5-triazine (RDX), and Nile blue. Nanomaterials. 12 (13), 2150 (2022).
  34. Moram, S. S. B., Byram, C., Soma, V. R. Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection. RSC Advances. 13 (4), 2620-2630 (2023).
  35. Zhang, D., Li, Z., Sugioka, K. Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. Journal of Physics: Photonics. 3 (4), 042002 (2021).
  36. Verma, A. K., Soni, R. K. Laser ablation synthesis of bimetallic gold-palladium core@shell nanoparticles for trace detection of explosives. Optics & Laser Technology. 163, 109429 (2023).
  37. Verma, A. K., Soni, R. K. Laser-textured hybrid tin-gold SERS platforms for ultra-trace analyte detection from contaminants. Optical Materials. 139, 113820 (2023).
  38. Podagatlapalli, G. K., Hamad, S., Rao, S. V. Trace-level detection of secondary explosives using hybrid silver-gold nanostructures and nanoparticles achieved with femtosecond laser ablation. The Journal of Physical Chemistry. C. 119 (29), 16972-16983 (2015).
  39. Hamad, S., Podagatlapalli, G. K., Mohiddon, M., Soma, V. R. Cost effective nanostructured copper substrates using ultrashort laser pulses for explosives detection using surface enhanced Raman spectroscopy. Applied Physics Letters. 104, 263104 (2014).
  40. Chandu, B., Bharati, M., Rao, S. V. Ag nanoparticles coupled with Ag nanostructures as efficient SERS platform for detection of 2, 4-Dinitrotoluene. 2017 IEEE Workshop on Recent Advances in Photonics (WRAP). IEEE. , 1-3 (2017).
  41. Naqvi, T. K., et al. Ultra-sensitive reusable SERS sensor for multiple hazardous materials detection on single platform. Journal of Hazardous Materials. 407, 124353 (2021).
  42. Byram, C., Moram, S. S. B., Soma, V. R. SERS based multiple analyte detection from explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures. Analyst. 144 (7), 2327-2336 (2019).
  43. Byram, C., Moram, S. S. B., Shaik, A. K., Soma, V. R. Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chemical Physics Letters. 685, 103-107 (2017).

Play Video

Cite This Article
Moram, S. S. B., Rathod, J., Banerjee, D., Soma, V. R. Ultrafast Laser-Ablated Nanoparticles and Nanostructures for Surface-Enhanced Raman Scattering-Based Sensing Applications. J. Vis. Exp. (196), e65450, doi:10.3791/65450 (2023).

View Video