Summary

Выделение и очистка бактериальных внеклеточных везикул из фекалий человека с помощью центрифугирования с градиентом плотности

Published: September 01, 2023
doi:

Summary

В этом исследовании описывается метод выделения и очистки бактериальных внеклеточных везикул (БЭВ), обогащенных из фекалий человека с помощью центрифугирования с градиентом плотности (ДГК), определяются физические характеристики БЭВ с точки зрения морфологии, размера частиц и концентрации, а также обсуждаются потенциальные применения подхода ДГК в клинических и научных исследованиях.

Abstract

Бактериальные внеклеточные везикулы (БЭВ) — это нановезикулы, полученные из бактерий, которые играют активную роль в коммуникации бактерии-бактерии и бактерии-хозяина, перенося биологически активные молекулы, такие как белки, липиды и нуклеиновые кислоты, унаследованные от родительских бактерий. БЭВ, полученные из микробиоты кишечника, оказывают воздействие на желудочно-кишечный тракт и могут достигать отдаленных органов, что приводит к значительным последствиям для физиологии и патологии. Теоретические исследования, изучающие типы, количества и роль БЭВ, полученных из фекалий человека, имеют решающее значение для понимания секреции и функции БЭВ из микробиоты кишечника. Эти исследования также требуют совершенствования существующей стратегии по изоляции и очистке БЭВ.

В этом исследовании оптимизирован процесс изоляции и очистки электромобилей путем установления двух режимов центрифугирования с градиентом плотности (DGC): сверху вниз и снизу вверх. Обогащенное распределение БЭВ определяли во фракциях от 6 до 8 (F6-F8). Эффективность подхода оценивалась на основе морфологии частиц, размера, концентрации и содержания белка. Были рассчитаны скорости извлечения частиц и белков, а также проанализировано наличие специфических маркеров для сравнения восстановления и чистоты двух режимов ДГК. Результаты показали, что режим центрифугирования «Сверху вниз» имеет более низкие уровни загрязнения и обеспечивает скорость восстановления и чистоту, аналогичные режиму «Снизу вверх». Время центрифугирования 7 ч было достаточным для достижения концентрации фекальных БЭВ 108/мг.

Помимо фекалий, этот метод может быть применен и к другим типам жидкостей организма с соответствующей модификацией в соответствии с различиями в компонентах и вязкости. В заключение, этот подробный и надежный протокол облегчит стандартизированную изоляцию и очистку БЭВ и, таким образом, заложит основу для последующего мультиомиксного анализа и функциональных экспериментов.

Introduction

Кишечник широко признан органом, содержащим самые многочисленные микробные сообщества в организме человека, причем более 90% бактерий участвуют в колонизации и размножении 1,2. Обширные данные свидетельствуют о том, что микробиота кишечника модулирует микроокружение кишечника и одновременно взаимодействует с дисфункцией отдаленных органов, в первую очередь через нарушение кишечного барьера 3,4. Появляется все больше данных, указывающих на корреляцию между дисбалансом микробиоты кишечника и прогрессированием воспалительных заболеваний кишечника (ВЗК)5,6, а также когнитивных нарушений через ось кишечник-мозг 5,6,7,8. Бактериальные внеклеточные везикулы (БЭВ), продуцируемые бактериями, играют значительную роль в этих патологических процессах.

БЭВ представляют собой наноразмерные частицы, инкапсулирующие производные бактерий, диаметром от 20 до 400 нм. Было продемонстрировано, что они облегчают взаимодействие между бактериями и их организмами-хозяевами 9,10. Несмотря на свою невидимость, эти частицы привлекают все большее внимание исследователей из-за их предполагаемого широкого применения в качестве диагностических биомаркеров, терапевтических мишеней и средств доставки лекарств11. Человеческие фекалии, часто используемые в качестве биологических образцов для изучения БЭВ, в основном полученные из кишечных бактерий, содержат сложную смесь воды, бактерий, липидов, белков, непереваренных остатков пищи и отслоившихся эпителиальных клеток. Сложный состав фекалий создает проблемы для изоляции и чистоты БЭВ, тем самым препятствуя всестороннему, объективному и реалистичному анализу БЭВ. Таким образом, эффективные стратегии минимизации помех от загрязняющих компонентов и повышения производительности электромобилей стали критически важными проблемами, требующими немедленного внимания.

Существующие стратегии изоляции в значительной степени основаны на таких методах, как сверхвысокоскоростное центрифугирование (UC), центрифугирование с градиентом плотности (DGC) и эксклюзионная хроматография (SEC)12,13,14,15,16,17. В настоящее время ДГК является одним из наиболее широко применяемых методов в области разделения БЭВ, охватывающим два седиментационно-плавающих режима, «сверху-вниз» и «снизу-вверх», которые определяются начальным положением загрузки образца. Эти методы позволяют дифференцировать внеклеточные везикулы (ВВ) от других компонентов на основе различий в размерах и плотности, обеспечивая различную чистоту и скорость восстановления. Предыдущие исследования показали, что стратегии однократного подхода недостаточны для адекватного отделения ВВ от растворимых белков в образцах биологических жидкостей, таких как липопротеин в крови18 и белок Тамма-Хорсфолла в моче19. Кроме того, распределение по размерам эукариотических внеклеточных везикул (ВЭВ) часто пересекается с распределением БЭВ, что обуславливает необходимость дальнейших методологических усовершенствований для оптимизации выхода БЭВ. Следовательно, дальнейшее изучение БЭВ зависит от разработки эффективных методологий сепарации и очистки. Примечательно, что Tulkens et al.15 использовали ортогональную биофизическую стратегию для отделения фекальных БЭВ от ВЭЭ, в которой время центрифугирования в режиме ДГК «снизу вверх» составляло до 18 ч. В отличие от этого, это исследование сократило его до 7 ч, что значительно сэкономило время градиентно-ультрацентрифугирования и упростило процесс.

В настоящем исследовании мы выделили и очистили фекальные БЭВ с использованием двух режимов ДГК в оптимизированных буферных условиях после обогащения БЭВ диапазоном дифференциальных скоростей центрифугирования, от низкой до чрезвычайно высокой. Оценки, основанные на морфологии, размере частиц и концентрации, показали похвальную эффективность этого усовершенствованного метода. Это исследование может послужить основой для будущих исследований, расширяя его применение в более широкой области и предлагая понимание гетерогенности БЭВ в организме человека. Это также способствует стандартизации методов разделения и анализа электромобилей.

Protocol

Комитет по этике больницы Наньфан Южного медицинского университета санкционировал это исследование, которое проводилось с информированного согласия участников. Все методы, используемые в настоящем документе, соответствуют стандартным операционным рекомендациям, предоставленным М?…

Representative Results

Определение распределения фракций, обогащенных BEVДля определения распределения фракций, обогащенных внеклеточными везикулами бактерий (БЭВ), был установлен холостой контроль для измерения значений абсорбции при ОД 340 нм, а плотность каждой фракции рассчитывалась на основе…

Discussion

Бактериальные внеклеточные везикулы (БЭВ) представляют собой липидно-бислойные наночастицы, секретируемые бактериями, несущие множество белков, липидов, нуклеиновых кислот и других биологически активных молекул, способствующих опосредованию функциональных эффектов бактерий<sup class="x…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Работа выполнена при поддержке Национального научного фонда для выдающихся молодых ученых (82025024); Ключевой проект Национального фонда естественных наук Китая (82230080); Национальная программа ключевых исследований и разработок Китая (2021YFA1300604); Национальный фонд естественных наук Китая (81871735, 82272438 и 82002245); Гуандунский фонд естественных наук для выдающихся молодых ученых (2023B1515020058); Фонд естественных наук провинции Гуандун (2021A1515011639); Крупная государственная программа развития фундаментальных исследований Фонда естественных наук провинции Шаньдун в Китае (ZR2020ZD11); Научный фонд постдокторантуры (2022M720059); Программа развития выдающейся молодежи больницы Наньфан Южного медицинского университета (2022J001).

Materials

1 % (w/v) glutaraldehyde (prepared from 2.5 % stock solution in deionized water) ACMEC AP1126 Morphological observation for BEVs using TEM at Step 8.3.3
1 % (w/v) methylcellulose (prepared from original powder in deionized water) Sigma-Aldrich M7027 Morphological observation for BEVs using TEM at Step 8.3.6
1.5 % (w/v) uranyl acetate (prepared from original powder in deionized water) Polysciences 21447-25 Morphological observation for BEVs using TEM at Step 8.3.5
1000 μL, 200 μL, 10 μL Pipette KIRGEN KG1313, KG1212, KG1011 Transfer the solution
5 % (w/v) bovine serum albumin solution (prepared from the original powder in TBST buffer) Fdbio science FD0030 Used in western blotting for blocking at Step 8.5.6
5 × loading buffer Fdbio science FD006 Used in western blotting and Coomassie brilliant blue stain at Step 8.5.1
75 % (v/v) alcohol LIRCON LIRCON-500 mL Surface disinfection
96-well plate Rar A8096 Measure the absorbance values 
Anti-Calnexin antibody Abcam ab92573 Western blotting (Primary Antibody)
Anti-CD63 antibody Abcam ab134045 Western blotting (Primary Antibody)
Anti-CD9 antibody Abcam ab236630 Western blotting (Primary Antibody)
Anti-Flagellin antibody Sino Biological 40067-MM06 Western blotting (Primary Antibody)
Anti-Integrin beta 1 antibody Abcam ab30394 Western blotting (Primary Antibody)
Anti-LPS antibody Thermo Fisher MA1-83152 Western blotting (Primary Antibody)
Anti-LTA antibody Thermo Fisher  MA1-7402 Western blotting (Primary Antibody)
Anti-OmpA antibody CUSABIO CSB-PA359226ZA01EOD, https://www.cusabio.com/ Western blotting (Primary Antibody)
Anti-Syntenin antibody Abcam ab133267 Western blotting (Primary Antibody)
Anti-TSG101 antibody Abcam ab125011 Western blotting (Primary Antibody)
Autoclave ZEALWAY GR110DP Sterilization for supplies and mediums used in the experiment
Balance Mettler Toledo AL104 Balance the tube sample-loaded with PBS
Bicinchoninic acid assay  Fdbio science FD2001 Measure protein content of BEVs at Step 8.2
BioRender BioRender https://app.biorender.com Make the schematic workflow of BEVs isolation and purification showed in Figure 1
Biosafety cabinet Haier HR1200- II B2 Peform the procedures about feces sample handling
Centrifuge 5810 R; Rotor F-34-6-38 Eppendorf 5805000092; 5804727002, adapter: 5804774000 Preprocess for BEVs (Step 3)
Chemiluminescence Apparatus BIO-OI OI600SE-MF Used in western blotting for signal detection at Step 8.5.12
Cytation 5 BioTek F01 Microplate detector for measuring the absorbance (Step 8.1) and fluorescence (Figure 6) values 
Dil-labled low density lipoprotein ACMEC AC12038 Definition of distribution of interfering components 
Electrophoresis equipment Bio-rad 1658033 Used in western blotting for protein separation and transfer at Step 8.5.2, 8.5.3, 8.5.5
Enhanced Chemiluminescence kit HRP  Fdbio science FD8020 Used in western blotting for signal detection at Step 8.5.12
Escherichia coli  American Type Culture Collection ATCC8739 Isolate BEVs as a positive control. Protocol: Dissolve 25 g of the LB powder in 1 L deionized water, and autoclave. Transfer the 800 μL of preserved Escherichia coli into the medium. Cultivate at 37 °C in the incubator shaker. Then centrifuge at 3, 000 × g for 20 min at 4 °C, 12, 000 × g for 30 min at 4 °C, filter the supernatant through 0.22 μm membrane, and perform ultra-speed centrifugation at 160, 000 × g for 70 min at 4 °C. Pellet defined as crude BEVs from Escherichia coli was suspended in 1.2 mL PBS (Step 3, 4).    
Falcon tubes 50 mL KIRGEN KG2811 Preprocess for BEVs (Step 3)
Feto Protein Staining Buffer Absci ab.001.50 Coomassie brilliant blue staining at Step 8.5.4
Filter paper Biosharp BS-TFP-070B Morphological observation for BEVs using TEM at Step 8.3 (Blotting the solution)
Formvar/Carbon supported copper grids  Sigma-Aldrich TEM-FCF200CU50 Morphological observation for BEVs using TEM at Step 8.3
HEPES powder Meilunbio MB6078 Prepare iodixanol buffers with different concentrations for density gradient centrifugation
HRP AffiniPure Goat Anti-Mouse IgG (H+L) Fdbio science FDM007 Western blotting (Secondary Antibody)
HRP AffiniPure Goat Anti-Rabbit IgG (H+L) Fdbio science FDR007 Western blotting (Secondary Antibody)
Incubator shaker Qiangwen DHZ-L Cultivate Escherichia coli 
Kimwipes™ Delicate Task Wipes Kimtech Science 34155 Wipe the inner wall of the ultracentrifuge tube at Step 4.15
LB broth Hopebio HB0128 Cultivate Escherichia coli 
Low temperature freezer (-80 °C) Haier DW-86L338J Store the samples
Methanol Alalddin M116118 Used in western blotting for activating PVDF membrane at Step 8.5.5
Micro tubes 1.5 mL KIRGEN KG2211 Recover fractions after density gradient centrifugation
Micro tubes 2 mL KIRGEN KG2911 Recover fractions after density gradient centrifugation
Micro tubes 5 mL BBI F610888-0001 Recover fractions after density gradient centrifugation
Microplate reader  Thermo Fisher  Multiskan MK3 Measure protein content of BEVs at Step 8.2
Millipore filter 0.22 μm Merck millipore SLGP033RB Filtration sterilization; Material: polyethersulfone, PES
NaCl GHTECH 1.01307.040 Density gradient centrifugation solution
NaOH GHTECH 1.01394.068 Density gradient centrifugation solution (pH adjustment)
Optima™ XPN-100 Beckman Coulter A94469 Ultracentrifugation for BEVs isolation at Step 4, 7
OptiPrep™ Serumwerk Bernburg AG 1893 Density gradient centrifugation stock solution
Orbital Shaker Youning CS-100 Dissolve feces at Step 2
Phosphate buffered saline Procell PB180327 Dissolve feces at Step 2
Pipettor Eppendorf 3120000267, 3120000259 Transfer the solution
Plastic pasteur pipette ABCbio ABC217003-4 Remove supernatant in preprocessing at Step 3.4
Polyvinylidene difluoride (PVDF) membranes Millipore ISEQ00010, IPVH00010 Used in western blotting for protein transfer at Step 8.5.5
Prefabricated polyacrylamide gel, 4–20% 15 Wells ACE F15420Gel Used in western blotting for protein separation at Step 8.5.2, 8.5.3
Primary antibody diluent Fdbio science FD0040 Used in western blotting at Step 8.5.8
Protein ladder Fdbio science FD0672 Used in western blotting and Coomassie brilliant blue stain at Step 8.5
Rapid protein blotting solution UBIO UW0500 Used in western blotting for protein transfer at Step 8.5.5
Rotor SW 32 Ti Swinging-Bucket Rotor Beckman Coulter 369650 Ultracentrifugation for BEVs isolation at Step 4, 7
Syringe 20 mL, 50 mL  Jetway ZSQ-20ML, YCXWJZSQ-50 mL Transfer buffers amd remove supernatant in preprocessing
TBS powder Fdbio science FD1021 Used in western blotting at Step 8.5
Transmission electron microscope (TEM) Hitachi  H-7650 Morphological observation for BEVs at Step 8.3
Tween-20 Fdbio science FD0020 Used in western blotting at Step 8.5
Ultracentrifuge tube Beckman 326823, 355642 Ultracentrifugation for BEVs isolation at Step 4, 7
Ultra-clean bench AIRTECH SW-CJ-2FD Peform the procedures about liquid handling
Water bath Bluepard CU600 Used for measuring protein content of BEVs at Step 8.2.5
ZetaView Particle Metrix S/N 21-734, Software ZetaView (version 8.05.14 SP7) Nanoparticle tracking analysis (NTA) for measuring the particle size and concentrarion of BEVs at Step 8.4

References

  1. Costello, E. K., et al. Bacterial community variation in human body habitats across space and time. Science. 326 (5960), 1694-1697 (2009).
  2. Greenhalgh, K., Meyer, K. M., Aagaard, K. M., Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environmental Microbiology. 18 (7), 2103-2116 (2016).
  3. de Vos, W. M., Tilg, H., Van Hul, M., Cani, P. D. Gut microbiome and health: mechanistic insights. Gut. 71 (5), 1020-1032 (2022).
  4. Zhou, P., Yang, D., Sun, D., Zhou, Y. Gut microbiome: New biomarkers in early screening of colorectal cancer. Journal of Clinical Laboratory Analysis. 36 (5), 24359 (2022).
  5. Paik, D., et al. Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites. Nature. 603 (7903), 907-912 (2022).
  6. Parada Venegas, D., et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology. 10, 277 (2019).
  7. Jiang, C., Li, G., Huang, P., Liu, Z., Zhao, B. The Gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease. 58 (1), 1-15 (2017).
  8. Morais, L. H., Schreiber, H. L. t., Mazmanian, S. K. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 19 (4), 241-255 (2021).
  9. Kim, J. H., Lee, J., Park, J., Gho, Y. S. Gram-negative and Gram-positive bacterial extracellular vesicles. Seminars in Cell and Developmental Biology. 40, 97-104 (2015).
  10. Toyofuku, M., Nomura, N., Eberl, L. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology. 17 (1), 13-24 (2019).
  11. Xie, J., Li, Q., Haesebrouck, F., Van Hoecke, L., Vandenbroucke, R. E. The tremendous biomedical potential of bacterial extracellular vesicles. Trends in Biotechnology. 40 (10), 1173-1194 (2022).
  12. Coumans, F. A. W., et al. Methodological guidelines to study extracellular vesicles. Circulation Research. 120 (10), 1632-1648 (2017).
  13. Northrop-Albrecht, E. J., Taylor, W. R., Huang, B. Q., Kisiel, J. B., Lucien, F. Assessment of extracellular vesicle isolation methods from human stool supernatant. Journal of Extracellular Vesicles. 11 (4), 12208 (2022).
  14. Park, Y. E., et al. Microbial changes in stool, saliva, serum, and urine before and after anti-TNF-α therapy in patients with inflammatory bowel diseases. Scientific Reports. 12 (1), 6359 (2022).
  15. Tulkens, J., De Wever, O., Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nature Protocols. 15 (1), 40-67 (2020).
  16. Tulkens, J., et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut. 69 (1), 191-193 (2020).
  17. Kang, C. S., et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS one. 8 (10), 76520 (2013).
  18. Simonsen, J. B. What are we looking at? Extracellular vesicles, lipoproteins, or both. Circulation Research. 121 (8), 920-922 (2017).
  19. Correll, V. L., et al. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. Journal of Extracellular Vesicles. 11 (2), 12184 (2022).
  20. Liang, X., et al. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes. 14 (1), 2134689 (2022).
  21. Alberti, G., et al. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic. 165 (3), 233-240 (2021).
  22. Díez-Sainz, E., Milagro, F. I., Riezu-Boj, J. I., Lorente-Cebrián, S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. Journal of Physiology and Biochemistry. 78 (2), 485-499 (2022).
  23. Lajqi, T., et al. Gut microbiota-derived small extracellular vesicles endorse memory-like inflammatory responses in murine neutrophils. Biomedicines. 10 (2), 442 (2022).
  24. Lee, K. E., et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome. 8 (1), 107 (2020).
  25. Villard, A., Boursier, J., Andriantsitohaina, R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 320 (4), G485-G495 (2021).
  26. Wei, S., et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. Journal of Cellular Physiology. 235 (5), 4843-4855 (2020).
  27. Bitto, N. J., Kaparakis-Liaskos, M. Methods of bacterial membrane vesicle production, purification, quantification, and examination of their immunogenic functions. Methods in Molecular Biology. 2523, 43-61 (2022).
  28. Stentz, R., Miquel-Clopés, A., Carding, S. R. Production, isolation, and characterization of bioengineered bacterial extracellular membrane vesicles derived from Bacteroides thetaiotaomicron and their use in vaccine development. Methods in Molecular Biology. 2414, 171-190 (2022).
  29. Zhang, Q., Jeppesen, D. K., Higginbotham, J. N., Franklin, J. L., Coffey, R. J. Comprehensive isolation of extracellular vesicles and nanoparticles. Nature Protocols. 18 (5), 1462-1487 (2023).
  30. Iwai, K., Minamisawa, T., Suga, K., Yajima, Y., Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. Journal of Extracellular Vesicles. 5, 30829 (2016).
  31. Vandeputte, D., et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 65 (1), 57-62 (2016).
  32. Wen, M., et al. Bacterial extracellular vesicles: A position paper by the Microbial Vesicles Task Force of the Chinese Society of Extracellular Vesicles. Interdisciplinary Medicine. 1, 12046 (2023).
check_url/65574?article_type=t

Play Video

Cite This Article
Xue, Y., Huang, X., Ou, Z., Wu, Y., Li, Q., Huang, X., Wen, M., Yang, Y., Situ, B., Zheng, L. Isolation and Purification of Bacterial Extracellular Vesicles from Human Feces Using Density Gradient Centrifugation. J. Vis. Exp. (199), e65574, doi:10.3791/65574 (2023).

View Video