Summary

Explorando a Ação Farmacológica e o Mecanismo Molecular do Salidrosídeo na Inibição da Proliferação e Migração de Células MCF-7

Published: June 09, 2023
doi:

Summary

O presente protocolo descreve uma estratégia abrangente para avaliar a ação farmacológica e o mecanismo do salidrosídeo na inibição da proliferação e migração de células MCF-7.

Abstract

Salidrosídeo (Sal) contém atividades farmacológicas anticarcinogênicas, anti-hipóxicas e anti-inflamatórias. No entanto, seus mecanismos subjacentes contra o câncer de mama foram apenas incompletamente elucidados. Assim, este protocolo pretendeu decodificar o potencial do Sal na regulação da via PI3K-AKT-HIF-1α-FoxO1 na proliferação maligna de células MCF-7 de câncer de mama humano. Primeiramente, a atividade farmacológica do Sal contra MCF-7 foi avaliada por CCK-8 e ensaios de arranhão celular. Além disso, a resistência das células MCF-7 foi medida por ensaios de migração e invasão de Matrigel. Para ensaios de apoptose celular e ciclo, as células MCF-7 foram processadas em etapas com anexina V-FITC/PI e kits de detecção de ciclo celular para análises por citometria de fluxo, respectivamente. Os níveis de espécies reativas de oxigênio (EROs) e Ca2+ foram examinados pelas colorações de imunofluorescência DCFH-DA e Fluo-4 AM. As atividades da Na+-K+-ATPase e da Ca2+-ATPase foram determinadas utilizando os kits comerciais correspondentes. Os níveis de expressão gênica e proteica na apoptose e na via PI3K-AKT-HIF-1α-FoxO1 foram posteriormente determinados usando análises de western blot e qRT-PCR, respectivamente. Descobrimos que o tratamento com Sal restringiu significativamente a proliferação, migração e invasão de células MCF-7 com efeitos dose-dependentes. Enquanto isso, a administração do Sal também forçou dramaticamente as células MCF-7 a sofrer apoptose e parada do ciclo celular. Os testes de imunofluorescência mostraram que o Sal estimulou observavelmente a produção de ROS e Ca2+ em células MCF-7. Dados adicionais confirmaram que Sal promoveu os níveis de expressão de proteínas pró-apoptóticas, Bax, Bim, caspase-9/7/3 clivada e seus genes correspondentes. Consistentemente, a intervenção com Sal reduziu proeminentemente a expressão das proteínas Bcl-2, p-PI3K/PI3K, p-AKT/AKT, mTOR, HIF-1α e FoxO1 e seus genes correspondentes. Em conclusão, o Sal pode ser usado como um potencial composto derivado de ervas para o tratamento do câncer de mama, pois pode reduzir a proliferação, migração e invasão malignas de células MCF-7 inibindo a via PI3K-AKT-HIF-1α-FoxO1.

Introduction

Como um dos cânceres mais comumente diagnosticados e malignidades mais comuns, as estatísticas mais recentes indicam que 2,3 milhões de casos de câncer de mama surgiram em todo o mundo até 2020, representando 11,7% de todos os casos de câncer1. Os sintomas comuns do câncer de mama incluem sensibilidade mamária e formigamento, nódulos e dor mamária, secreção mamilar, erosão ou pele afundada e linfonodos axilares aumentados 1,2. Ainda mais alarmante, o número de novos casos e a incidência geral de câncer de mama continuam a aumentar a uma taxa avassaladora a cada ano, sendo responsáveis por 6,9% das mortes relacionadas ao câncer1. Atualmente, a intervenção contra o câncer de mama ainda envolve principalmente quimioterapia, cirurgia, radioterapia e tratamento abrangente. Embora o tratamento possa efetivamente reduzir a taxa de recorrência e a taxa de mortalidade dos pacientes, a aplicação do tratamento em longo prazo frequentemente produz resistência a múltiplas drogas, queda de cabelo em grandes áreas, náuseas e vômitos e grave sobrecarga mental e psicológica 2,3. Notavelmente, o risco potencial de metástases de múltiplos órgãos do câncer de mama também força as pessoas a procurar novas fontes fitoterápicas de terapia medicamentosa 4,5.

A sinalização mediada pela fosfoinositida 3 quinase (PI3K) está implicada no crescimento, proliferação e sobrevida do câncer de mama por meio de splicing que afeta a expressão de múltiplos genes6. Como uma proteína sensível ao sinal a jusante da PI3K, numerosas evidências sugerem que a proteína quinase B (AKT) poderia acoplar-se ao alvo mamífero da proteína rapamicina (mTOR) para aumentar ainda mais o câncer de mama 7,8,9. Além disso, a desativação da sinalização PI3K/AKT/mTOR também tem sido reivindicada como um componente-chave em drogas que inibem a proliferação maligna e estimulam a apoptose no câncer de mama10,11,12. Sabe-se que a hipóxia extrema no microambiente tumoral força um aumento maciço do fator 1 alfa induzível por hipóxia (HIF-1α), o que piora ainda mais a progressão do câncer de mama13,14,15. Paralelamente, a estimulação com AKT também leva ao acúmulo excessivo de HIF-1α, limitando a apoptose em amostras de câncer de mama16,17. Curiosamente, a ativação da sinalização PI3K-AKT-HIF-1α foi confirmada como envolvida na progressão patológica e metástase em uma variedade de cânceres, incluindo câncer de pulmão18, câncer colorretal19, câncer de ovário20 e câncer de próstata21. Além de ser orquestrada pelo HIF-1α, a superexpressão do fator de transcrição cabeça bifurcada 1 (FoxO1) também é desencadeada pela estimulação da sinalização AKT, que promove a parada do ciclo e a inibição da apoptose em células do câncer de mama22,23. Juntas, as evidências sólidas acima sugerem que a inibição da cascata da sinalização PI3K-AKT-HIF-1α-FoxO1 pode ser um novo alvo potencial para a terapia medicamentosa no câncer de mama.

O salidrosídeo (Sal) tem demonstrado amplamente exercer atividades farmacológicas antineoplásicas 24,25, anti-hipóxia26,27,28,29 e imunoestimulantes 30. É um pó marrom claro ou marrom que é facilmente solúvel em água, é um tipo de glicosídeo feniletanóide, e tem uma fórmula de estrutura química de C14H 20 O7 e um peso molecular de300,331,32. Investigações farmacológicas modernas têm demonstrado que o Sal pode promover a apoptose de células do câncer gástrico restringindo a sinalização PI3K-AKT-mTOR24. Outras evidências também sugerem que a supressão da sinalização PI3K-AKT-HIF-1α pelo tratamento com Sal pode contribuir para a apoptose de células cancerosas, aumentando sua sensibilidade a agentes quimioterápicos25. Evidências também sugerem que o Sal restringe a migração e invasão celular e causa a parada do ciclo por promover apoptose nas células MCF-7 do câncer de mama humano33,34. No entanto, resta saber se o Sal pode regular a sinalização PI3K-AKT-HIF-1α-FoxO1 e inibir a proliferação maligna de células MCF-7. Portanto, este protocolo teve como objetivo explorar os efeitos do Sal na migração, invasão, ciclo celular e apoptose de células MCF-7 via via PI3K-AKT-HIF-1α-FoxO1. As estratégias de pesquisa integradas que incluem experimentos convencionais, de baixo custo e independentes, como avaliações de migração e invasão celular, apoptose e detecção do ciclo celular por citometria de fluxo, determinação de espécies reativas de oxigênio (ROS) e fluorescência de Ca2+, etc., podem fornecer uma referência para o planejamento geral de experimentos para pesquisa anticâncer com a medicina fitoterápica tradicional. O processo experimental deste estudo é mostrado na Figura 1.

Protocol

As células MCF-7 utilizadas no presente estudo foram obtidas de fonte comercial (ver Tabela de Materiais). 1. Cultura celular Cultivar as células MCF-7 em atmosfera umidificada de 5% de CO2 a 37 °C com DMEM contendo FBS a 10% e penicilina a 1% (10.000 U/mL)/estreptomicina (10.000 μg/mL) (ver Tabela de Materiais).NOTA: As células que cobrem 90% do fundo da placa foram empregadas para o experimento e divididas nos s…

Representative Results

Efeitos do Sal na inibição do excesso de proliferação e retardo da cicatrização de feridas em células MCF-7Para sondar o potencial do Sal contra o câncer de mama, primeiro testamos suas propriedades anticancerígenas usando ensaios de toxicidade de proliferação celular e arranhões da linhagem celular MCF-7 do câncer de mama humano. Essas células foram co-incubadas com uma série de concentração de Sal (5-320 μM) por 24 h, e a proliferação celular foi avaliada usando um ensaio CCK-8….

Discussion

O câncer de mama acomete indivíduos de todas as idades e causa incalculável sobrecarga física e mental e grande pressão econômica1. O câncer de mama, com sua crescente morbidade e mortalidade a cada ano, também tem atraído a atenção mundial na busca de terapias compostas fitoterápicas eficazes além dos tratamentos convencionais 4,5. De forma promissora, um grande corpo de evidências tem revelado os efeitos anticancerígenos d…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela Comissão de Saúde da Província de Sichuan (120025).

Materials

1% penicillin/streptomycin HyClone SV30010
AKT antibody ImmunoWay Biotechnology Company YT0185
Annexin V-FITC/PI kit MultiSciences Biotech Co., Ltd. AP101
Automatic microplate reader Molecular Devices SpectraMax iD5
Bax antibody Cell Signaling Technology, Inc. #5023
BCA kit Biosharp Life Sciences BL521A
Bcl-2 antibody Cell Signaling Technology, Inc. #15071
Bim antibody Cell Signaling Technology, Inc. #2933
Ca2+–ATPase assay kit Nanjing Jiancheng Bioengineering Institute A070-4-2
Cell counting kit-8 Biosharp Life Sciences BS350B
Cell cycle staining kit MultiSciences Biotech Co., Ltd. CCS012
cleaved caspase-3 Cell Signaling Technology, Inc. #9661
cleaved caspase-7 Cell Signaling Technology, Inc. #8438
cleaved caspase-9 Cell Signaling Technology, Inc. #20750
Crystal violet solution Beyotime Biotechnology C0121
DMEM high glucose culture medium Servicebio Technology Co., Ltd. G4510
Doxorubicin hydrochloride MedChemExpress HY-15142
ECL chemiluminescent solution Biosharp Life Sciences BL520B
Fetal bovine serum Procell Life Science & Technology Co., Ltd. 164210
Flow cytometer BD FACSCanto Equation 1
Fluo-4 AM Beyotime Biotechnology S1060
FoxO1 antibody ImmunoWay Biotechnology Company YT1758
Goat anti-rabbit IgG secondary antibody MultiSciences Biotech Co., Ltd. 70-GAR0072
GraphPad Prism software La Jolla Version 6.0
HIF-1α antibody Affinity Biosciences BF8002
Human breast cancer cell line MCF-7 Procell Life Science & Technology Co., Ltd. CL-0149
Loading buffer Biosharp Life Sciences BL502B
LY294002 MedChemExpress HY-10108
Matrigel Thermo  356234
mTOR antibody Servicebio Technology Co., Ltd. GB11405
Na+–K+–ATPase assay kit Nanjing Jiancheng Bioengineering Institute A070-2-2
Optical microscope Olympus IX71PH
p-AKT antibody ImmunoWay Biotechnology Company YP0006
PI3K antibody Servicebio Technology Co., Ltd. GB11525
p-PI3K antibody Affinity Biosciences AF3241
Quantitative western blot imaging system Touch Image Pro eBlot
Reverse transcription first strand cDNA synthesis kit Servicebio Technology Co., Ltd. G3330-100
ROS assay kit Beyotime Biotechnology S0033S DCFH-DA fluorescence probe is included here
Salidroside Chengdu Herbpurify Co., Ltd. H-040
SDS-PAGE kit Servicebio Technology Co., Ltd. G2003-50T
Total RNA isolation kit Foregene RE-03014
Trypsin HyClone SH30042.01
β-actin Affinity Biosciences AF7018

References

  1. Sung, H., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 71 (3), 209-249 (2021).
  2. Franzoi, M. A., et al. Evidence-based approaches for the management of side-effects of adjuvant endocrine therapy in patients with breast cancer. Lancet Oncology. 22 (7), e303-313 (2021).
  3. Prionas, N. D., Stephens, S. J., Blitzblau, R. C. Early-stage breast cancer: Tailored external beam fractionation approaches for treatment of the whole or partial breast. Seminars in Radiation Oncology. 32 (3), 245-253 (2022).
  4. Wei, W. C., et al. Diterpenoid vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacological Research. 182, 106285 (2022).
  5. Zhu, Y., et al. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Frontiers in Pharmacology. 13, 803717 (2022).
  6. Ladewig, E., et al. The oncogenic PI3K-induced transcriptomic landscape reveals key functions in splicing and gene expression regulation. Cancer Research. 82 (12), 2269-2280 (2022).
  7. Lu, Z. N., Song, J., Sun, T. H., Sun, G. UBE2C affects breast cancer proliferation through the AKT/mTOR signaling pathway. Chinese Medical Journal. 134 (20), 2465-2474 (2021).
  8. Weng, H. C., et al. The combination of a novel GLUT1 inhibitor and cisplatin synergistically inhibits breast cancer cell growth by enhancing the DNA damaging effect and modulating the Akt/mTOR and MAPK signaling pathways. Frontiers in Pharmacology. 13, 879748 (2022).
  9. Silveira Rabelo, A. C., et al. Calotropis procera induced caspase dependent apoptosis and impaired Akt/mTOR signaling in 4T1 breast cancer cells. Anti-Cancer Agents in Medicinal Chemistry. 22 (18), 3136-3147 (2022).
  10. Tohkayomatee, R., Reabroi, S., Tungmunnithum, D., Parichatikanond, W., Pinthong, D. Andrographolide exhibits anticancer activity against breast cancer cells (MCF-7 and MDA-MB-231 cells) through suppressing cell proliferation and inducing cell apoptosis via inactivation of ER-α receptor and PI3K/AKT/mTOR signaling. Molecules. 27 (11), 3544 (2022).
  11. Jin, X. Y., et al. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. Journal of Translational Medicine. 20 (1), 191 (2022).
  12. Li, Z. W., et al. Atractylodin induces oxidative stress-mediated apoptosis and autophagy in human breast cancer MCF-7 cells through inhibition of the P13K/Akt/mTOR pathway. Journal of Biochemical and Molecular Toxicology. 36 (8), 23081 (2022).
  13. Chen, F., et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nature Cell Biology. 21 (4), 498-510 (2019).
  14. You, D., et al. Mitochondrial malic enzyme 2 promotes breast cancer metastasis via stabilizing HIF-1α under hypoxia. Chinese Journal of Cancer Research. 33 (3), 308-322 (2021).
  15. La Camera, G., et al. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Letters. 521, 155-168 (2021).
  16. Jeong, Y. J., et al. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology. 273 (3), 542-550 (2013).
  17. Zhang, T., et al. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: Combined administration of polydatin and 2-deoxy-d-glucose. Journal of Cellular and Molecular Medicine. 23 (5), 3711-3723 (2019).
  18. Han, N. N., et al. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral Oncology. 131, 105940 (2022).
  19. Sun, L. T., Zhang, L. Y., Shan, F. Y., Shen, M. H., Ruan, S. M. Jiedu Sangen decoction inhibits chemoresistance to 5-fluorouracil of colorectal cancer cells by suppressing glycolysis via PI3K/AKT/HIF-1α signaling pathway. Chinese Journal of Natural Medicines. 19 (2), 143-152 (2021).
  20. Gao, T., et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Letters. 469, 89-101 (2020).
  21. Zhu, W. H., et al. Dihydroartemisinin suppresses glycolysis of LNCaP cells by inhibiting PI3K/AKT pathway and downregulating HIF-1α expression. Life Sciences. 233, 116730 (2019).
  22. Sajadimajd, S., Yazdanparast, R. Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements. Molecular and Cellular Biochemistry. 408 (1-2), 89-102 (2015).
  23. Sajadimajd, S., Yazdanparast, R., Akram, S. Involvement of Numb-mediated HIF-1α inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells. Tumor Biology. 37 (4), 5413-5426 (2016).
  24. Rong, L., et al. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomedicine & Pharmacotherapy. 122, 109726 (2020).
  25. Zeng, Q., et al. Salidroside promotes sensitization to doxorubicin in human cancer cells by affecting the PI3K/Akt/HIF signal pathway and inhibiting the expression of tumor-resistance-related proteins. Journal of Natural Products. 85 (1), 196-204 (2022).
  26. Wang, X. B., et al. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1α/microRNA210/ISCU1/2 (COX10) signaling pathway. Journal of Ethnopharmacology. 241, 111801 (2019).
  27. Tang, Y., et al. Salidroside attenuates CoCl2-simulated hypoxia injury in PC12 cells partly by mitochondrial protection. European Journal of Pharmacology. 912, 174617 (2021).
  28. Jiang, S. N., et al. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. European Journal of Pharmacology. 925, 175015 (2022).
  29. Wang, X. B., et al. Salidroside, a phenyl ethanol glycoside from Rhodiola crenulata, orchestrates hypoxic mitochondrial dynamics homeostasis by stimulating Sirt1/p53/Drp1 signaling. Journal of Ethnopharmacology. 293, 115278 (2022).
  30. Vasileva, L. V., et al. Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food and Chemical Toxicology. 121, 604-611 (2018).
  31. Hou, Y., et al. Salidroside intensifies mitochondrial function of CoCl2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. Phytomedicine. 109, 154568 (2023).
  32. Fan, F. F., et al. Salidroside as a potential neuroprotective agent for ischemic stroke: A review of sources, pharmacokinetics, mechanism and safety. Biomedicine & Pharmacotherapy. 129, 110458 (2020).
  33. Hu, X. L., Zhang, X. Q., Qiu, S. F., Yu, D. H., Lin, S. X. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochemical and Biophysical Research Communications. 398 (1), 62-67 (2010).
  34. Zhao, G., Shi, A. P., Fan, Z. M., Du, Y. Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Oncology Reports. 33 (5), 2553-2560 (2015).
  35. Bai, J. R., et al. The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation. Biomedicine & Pharmacotherapy. 149, 112847 (2022).
  36. Hou, Y., et al. Longzhibu disease and its therapeutic effects by traditional Tibetan medicine: Ershi-wei Chenxiang pills. Journal of Ethnopharmacology. 249, 112426 (2020).
  37. Yang, L., et al. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. Journal of Ethnopharmacology. 288, 114988 (2022).
  38. Cui, L. J., et al. Salidroside promotes apoptosis of human HCT116 colon cancer cells by regulating Wnt/β-catenin signaling pathway. Pharmacological Research – Modern Chinese Medicine. 3, 100088 (2022).
  39. Wu, S. L., et al. Genome-wide 5-Hydroxymethylcytosine profiling analysis identifies MAP7D1 as a novel regulator of lymph node metastasis in breast cancer. Genomics Proteomics & Bioinformatics. 19 (1), 64-79 (2021).
  40. Du, J. W., et al. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. Materials Science & Engineering C-Materials for Biological Applications. 116, 111188 (2020).
  41. Wang, S. F., et al. Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin-estrogen receptor loop signaling. Cancer Letters. 523, 82-99 (2021).
  42. Zuo, Y., et al. Activation of mitochondrial-associated apoptosis signaling pathway and inhibition of PI3K/Akt/mTOR signaling pathway by voacamine suppress breast cancer progression. Phytomedicine. 99, 154015 (2022).
check_url/65634?article_type=t

Play Video

Cite This Article
Cui, L., Ye, C., Luo, T., Jiang, H., Lai, B., Wang, H., Chen, Z., Li, Y. Exploring the Pharmacological Action and Molecular Mechanism of Salidroside in Inhibiting MCF-7 Cell Proliferation and Migration. J. Vis. Exp. (196), e65634, doi:10.3791/65634 (2023).

View Video