Summary

Modélisation précoce non guidée de la niche neurovasculaire organoïde du cerveau humain dans la membrane chorioallantoïde permissive de l’embryon de poussin

Published: February 16, 2024
doi:

Summary

Ici, nous présentons un protocole pour greffer des organoïdes cérébraux humains à plusieurs stades de maturation dans la membrane chorioallantoïdienne (CAM) du poulet. Les organoïdes cérébraux ont été cultivés selon des protocoles standardisés non guidés.

Abstract

La greffe d’organoïdes dans des tissus vascularisés chez des animaux modèles, tels que la membrane chorioallantoïde (CAM) immunodéficiente de souris ou d’embryon de poussin, s’est avérée efficace pour la modélisation de la néovascularisation. La CAM est une membrane extraembryonnaire richement vascularisée, qui présente une immunoréactivité limitée, devenant ainsi un excellent modèle d’accueil pour les greffes de cellules d’origine humaine.

Cet article décrit la stratégie pour greffer des organoïdes cérébraux humains différenciés à plusieurs stades de maturation dans la CAM. La composition cellulaire des organoïdes cérébraux change avec le temps, reflétant les étapes importantes du développement du cerveau humain. Nous avons greffé des organoïdes cérébraux aux stades de maturation pertinents : expansion neuroépithéliale (18 DIV), neurogenèse précoce (60 DIV) et gliogenèse précoce (180 DIV) dans la CAM d’embryons embryonnaires de poulet jour (E)7. Des organoïdes cérébraux greffés ont été prélevés 5 jours plus tard et leurs caractéristiques histologiques ont été analysées.

Aucun signe histologique de néovascularisation dans les organoïdes greffés ou vaisseaux sanguins anormaux adjacents aux greffes n’a été détecté. De plus, des changements remarquables ont été observés dans la composition cellulaire des organoïdes greffés, à savoir une augmentation du nombre d’astrocytes réactifs à l’acide fibrillaire glial. Cependant, les changements cytoarchitecturaux dépendaient du stade de maturation des organoïdes. Dans l’ensemble, ces résultats suggèrent que les organoïdes cérébraux peuvent se développer dans la CAM, et ils montrent des différences dans la cytoarchitecture en fonction de leur stade de maturation à la greffe.

Introduction

Les organoïdes cérébraux humains sont une technique émergente qui nous permet de récapituler le développement précoce du cerveau humain in vitro 1,2,3. Néanmoins, l’une des limites majeures de ce modèle est le manque de vascularisation, qui joue un rôle indispensable non seulement dans l’homéostasie cérébrale mais aussi dans le développement du cerveau4. En plus de l’apport d’oxygène et de nutriments, de plus en plus de preuves suggèrent que le système vasculaire du cerveau régule la différenciation, la migration et la synaptogenèse neuronales au cours du développement 5,6. Par conséquent, il est urgent d’établir des modèles fiables capables de fournir la signalisation vasculaire et la structure manquantes aux organoïdes cérébraux, augmentant ainsi la complexité de la génération d’organoïdes cérébraux humains7.

Parmi les méthodes de vascularisation proposées, deux axes principaux peuvent être envisagés : la greffe d’organoïdes dans un organisme vivant et les technologies purement in vitro co-cultivant des cellules endothéliales et des cellules neurales 8,9,10,11,12. La transplantation intracérébrale chez la souris est coûteuse et prend du temps, ce qui rend d’autres technologies pertinentes pour des modèles plus simples. Le test de la membrane chorioallantoïdienne (CAM) du poulet a été largement utilisé pour étudier l’angiogenèse 13,14,15. Au cours de la dernière décennie, plusieurs groupes ont réussi à greffer différents types d’organoïdes, notamment des organoïdes rénaux16,17, cardiaques18 et tumoraux19,20, dans des CAM. Néanmoins, on sait peu de choses sur l’efficacité, la toxicité/rejet, l’effet physiologique et les méthodes de greffe d’organoïdes cérébraux humains dans la MCA. Un autre aspect intéressant et encore inexploré est la formation d’une barrière hémato-encéphalique chimérique (BHE) entre la CAM et l’interface astrocytaire organoïde. Des travaux pionniers antérieurs ont suggéré la faisabilité présumée de générer une BHE dans le CAM en transplantant des astrocytes et un milieu conditionné par les astrocytes 21,22,23. Cependant, les astrocytes matures semblent incapables d’atteindre ce24,25. Ainsi, la formation de la BHE induite par les astrocytes reste discutable, et la transplantation d’organoïdes cérébraux humains permettrait de faire la lumière sur cette controverse.

Cet article vidéo décrit un protocole de greffe d’organoïdes cérébraux humains in ovo dans la MCA qui favorise la croissance, l’amélioration et la vascularisation, ce qui permet d’obtenir des organoïdes qui englobent des éléments de la BHE histologiquement compatibles. Ici, nous présentons un protocole assurant la survie de l’embryon de poulet et rapportons la permissivité de la CAM pour soutenir la croissance des organoïdes cérébraux.

Protocol

Les embryons de poulet Leghorn blanc (Gallus gallus) ont été traités en suivant le Guide pour le soin et l’utilisation des animaux de laboratoire de l’Institut des ressources pour les animaux de laboratoire, Commission des sciences de la vie, Conseil national de la recherche, États-Unis, et les expériences ont été approuvées par le Conseil pour le soin et l’utilisation des animaux de laboratoire de l’Université de Barcelone. 1. Préparation non guidée d’organ…

Representative Results

Sélection du calendrier de maturation embryonnaire pour la greffeL’expérience commence à J0 lorsque les œufs fécondés sont incubés à 38 °C et 60 % d’humidité relative. La membrane chorioallantoïdienne (CAM) est une membrane extraembryonnaire hautement vascularisée qui se développe après l’incubation de l’œuf. Il est formé par la fusion de l’allantoïde et du chorion. À J1, après 24 h d’incubation, la chambre à air est perforée pour empêcher le CAM de se fixer à la me…

Discussion

Dans cette étude, nous décrivons un protocole détaillé avec de nombreuses étapes clés qui assurent une croissance et un développement favorables des organoïdes cérébraux humains lors de la greffe sans perturber la survie des embryons de poulet. Nous avons recommandé l’utilisation d’aiguilles stériles pour percer la chambre à air de l’œuf après 24 h d’incubation (jour 1). De plus, nous avons également essayé de faire la ponction au jour 4 (après avoir vérifié la coquille de l’œuf à la lumi?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous remercions le Dr Alcántara et le Dr Ortega de l’UB et le reste des membres du laboratoire du Dr Acosta pour ces discussions perspicaces. S.A. est professeur adjoint à la Generalitat de Catalunya de l’Université de Barcelone.

Materials

Anti-TUBB3 [Tuj1], mouse  BioLegend 801201 1:1,000
Anti-GFAP, rabbit GeneTex GTX108711 1:500
Anti-rabbit AlexaFluor 488, goat. Invitrogen A-21206 1:1,000
Anti-mouse AlexaFluor 594, goat Jackson ImmunoResearch 715-585-150 1:500
Fertilized White Leghorn chicken (Gallus gallus) eggs Granja Gibert (Cambrils, Spain)
DAPI Invitrogen D1306 1:10,000
DPX Sigma 100579 xylene-based mounting medium 
Gentle Dissociation Solution CreativeBiolabs ITS-0622-YT187 cell dissociation solution
Matrigel BD Biosciences 356234
Mowiol 4-88 mounting media Merk 81381
Paper towel, lab-grade Sigma-Aldrich Z188956
ROCK inhibitor Y27632 Millipore SCM075 10 nM
Sharp-Point Surgical Scissors VWR 470106-340
Superfrost Plus Adhesion Microscope Slides Epredia J1800AMNZ

References

  1. Camp, J. G., et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112 (51), 15672-15677 (2015).
  2. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345 (6194), 1247125 (2014).
  3. Yang, Q., Hong, Y., Zhao, T., Song, H., Ming, G. L. What makes organoids good models of human neurogenesis. Front Neurosci. 16, 872794 (2022).
  4. Sun, X. Y., et al. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 11, e76707 (2022).
  5. Paredes, I., et al. Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor-endothelial cell crosstalk. Nat Neurosci. 24 (4), 478-488 (2021).
  6. Matsui, T. K., Tsuru, Y., Hasegawa, K., Kuwako, K. I. Vascularization of human brain organoids. Stem Cells. 39 (8), 1017-1024 (2021).
  7. Apostolou, E., et al. Progress and challenges in stem cell biology. Nat Cell Biol. 25 (2), 203-206 (2023).
  8. Pham, M. T., et al. Generation of human vascularized brain organoids. Neuroreport. 29 (7), 588-593 (2018).
  9. Cakir, B., et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 16 (11), 1169-1175 (2019).
  10. Shi, Y., et al. Vascularized human cortical organoids (vorganoids) model cortical development in vivo. PLoS Biol. 18 (5), e3000705 (2020).
  11. Mansour, A. A., et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 36 (5), 432-441 (2018).
  12. Revah, O., et al. Maturation and circuit integration of transplanted human cortical organoids. Nature. 610 (7931), 319-326 (2022).
  13. Ribatti, D. Chicken chorioallantoic membrane angiogenesis model. Methods Mol Biol. 843, 47-57 (2012).
  14. Nowak-Sliwinska, P., Segura, T., Iruela-Arispe, M. L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 17 (4), 779-804 (2014).
  15. Kennedy, D. C., Coen, B., Wheatley, A. M., Mccullagh, K. J. A. Microvascular experimentation in the chick chorioallantoic membrane as a model for screening angiogenic agents including from gene-modified cells. Int J Mol Sci. 23 (1), 452 (2021).
  16. Garreta, E., et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat Mater. 18 (4), 397-405 (2019).
  17. Kaisto, S., et al. Optimization of renal organoid and organotypic culture for vascularization, extended development, and improved microscopy imaging. J Vis Exp. (157), e60995 (2020).
  18. Varzideh, F., et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials. 192, 537-550 (2019).
  19. Komatsu, A., et al. The cam model for cic-dux4 sarcoma and its potential use for precision medicine. Cells. 10 (10), 2613 (2021).
  20. Worsdorfer, P., et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep. 9 (1), 15663 (2019).
  21. Janzer, R. C., Jaff, M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 325 (6101), 253-257 (1987).
  22. Janzer, R. C. The blood-brain barrier: Cellular basis. J Inherit Metab Dis. 16 (4), 639-647 (1993).
  23. Lobrinus, J. A., Juillerat-Jeanneret, L., Darekar, P., Schlosshauer, B., Janzer, R. C. Induction of the blood-brain barrier specific ht7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Brain Res Dev Brain Res. 70 (2), 207-211 (1992).
  24. Holash, J. A., Stewart, P. A. Chorioallantoic membrane (cam) vessels do not respond to blood-brain barrier (bbb) induction. Adv Exp Med Biol. 331, 223-228 (1993).
  25. Holash, J. A., Noden, D. M., Stewart, P. A. Re-evaluating the role of astrocytes in blood-brain barrier induction. Dev Dyn. 197 (1), 14-25 (1993).
  26. Giandomenico, S. L., Sutcliffe, M., Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat Protoc. 16 (2), 579-602 (2021).
  27. Wagner-Amos, K., Seymour, R. S. Effect of local shell conductance on the vascularisation of the chicken chorioallantoic membrane. Respir Physiol Neurobiol. 134 (2), 155-167 (2003).
  28. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn. 195 (4), 231-272 (1992).
  29. Paredes, I., Himmels, P., Ruiz De Almodovar, C. Neurovascular communication during cns development. Dev Cell. 45 (1), 10-32 (2018).
  30. Hogan, K. A., Ambler, C. A., Chapman, D. L., Bautch, V. L. The neural tube patterns vessels developmentally using the vegf signaling pathway. Development. 131 (7), 1503-1513 (2004).
  31. Bozoyan, L., Khlghatyan, J., Saghatelyan, A. Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via vegf signaling. J Neurosci. 32 (5), 1687-1704 (2012).
  32. Himmels, P., et al. Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun. 8, 14583 (2017).
  33. Di Lullo, E., Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 18 (10), 573-584 (2017).
check_url/65710?article_type=t

Play Video

Cite This Article
Fiore, L., Arderiu, J., Martí-Sarrias, A., Turpín, I., Pareja, R. I., Navarro, A., Holubiec, M., Bianchelli, J., Falzone, T., Spelzini, G., Scicolone, G., Acosta, S. Early Unguided Human Brain Organoid Neurovascular Niche Modeling into the Permissive Chick Embryo Chorioallantoic Membrane. J. Vis. Exp. (204), e65710, doi:10.3791/65710 (2024).

View Video