Summary

Modèle d’explant murin d’un membre postérieur pour l’étude de la mécanobiologie du conflit du tendon d’Achille

Published: December 08, 2023
doi:

Summary

Nous présentons une plate-forme expérimentale personnalisée et un protocole de culture tissulaire qui recrée le changement fibrocartilagineux induit par le conflit de l’insertion du tendon d’Achille dans les explants murins des membres postérieurs avec une viabilité cellulaire soutenue, fournissant un modèle adapté à l’exploration de la mécanobiologie du conflit tendonineux.

Abstract

L’impact tendineux sur l’os génère un environnement de déformation mécanique multiaxiale avec une déformation de compression transversale nettement élevée, ce qui provoque un phénotype de fibrocartilage localisé caractérisé par l’accumulation d’une matrice riche en glycosaminoglycanes (GAG) et le remodelage du réseau de collagène. Alors que le fibrocartilage est une caractéristique normale dans les régions touchées des tendons sains, le dépôt excessif de GAG et la désorganisation du réseau de collagène sont des caractéristiques caractéristiques de la tendinopathie. En conséquence, le conflit est cliniquement reconnu comme un facteur extrinsèque important dans l’initiation et la progression de la tendinopathie. Néanmoins, la mécanobiologie sous-jacente au conflit tendineux reste peu étudiée. Des efforts antérieurs pour élucider la réponse cellulaire au conflit tendineux ont appliqué une compression uniaxiale aux cellules et excisé des explants tendineux in vitro. Cependant, les cellules isolées n’ont pas d’environnement extracellulaire tridimensionnel crucial pour la mécanoréponse, et les études in vitro et les études d’explants excisés ne parviennent pas à récapituler l’environnement de déformation multiaxiale généré par le conflit tendineux in vivo, qui dépend des caractéristiques anatomiques de la région touchée. De plus, les modèles in vivo de conflit tendineux manquent de contrôle sur l’environnement de déformation mécanique. Pour pallier ces limitations, nous présentons un nouveau modèle d’explant de membre postérieur murin adapté à l’étude de la mécanobiologie du conflit du tendon d’Achille. Ce modèle maintient le tendon d’Achille in situ pour préserver l’anatomie locale et reproduit l’environnement de déformation multiaxiale généré par l’impact de l’insertion du tendon d’Achille sur le calcanéum lors d’une dorsiflexion passive de la cheville tout en conservant les cellules dans leur environnement d’origine. Nous décrivons un protocole de culture tissulaire faisant partie intégrante de ce modèle et présentons des données établissant la viabilité durable de l’explant sur 7 jours. Les résultats représentatifs démontrent une amélioration de la coloration histologique des GAG et une diminution de l’alignement des fibres de collagène secondaire au conflit, suggérant une formation élevée de fibrocartilage. Ce modèle peut facilement être adapté pour étudier différents régimes de charge mécanique et permet la manipulation de voies moléculaires d’intérêt pour identifier les mécanismes médiant le changement phénotypique dans le tendon d’Achille en réponse au conflit.

Introduction

Une multitude de tendons, y compris le tendon d’Achille et les tendons de la coiffe des rotateurs, subissent un conflit osseux dû à un positionnement anatomique normal1,2,3,4. Le conflit tendineux génère une contrainte de compression dirigée transversalement à l’axe longitudinal de la fibre5,6,7. Les régions de conflit tendineux présentent un phénotype de fibrocartilage unique dans lequel des cellules rondes rétrécies (fibrochondrocytes) sont intégrées dans un réseau de collagène désorganisé avec une teneur en glycosaminoglycane (GAG) nettement accrue2,3,4,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24. Des études antérieures suggèrent que l’environnement mécanique disparate produit par le conflit tendineux soutient cette matrice riche en GAG en conduisant au dépôt de protéoglycanes agrégeants de grande taille, notamment l’aggrécan, bien que les mécanismes sous-jacents ne soient pas clairs1,3,12,13,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39. Alors que le fibrocartilage est une caractéristique normale dans les régions touchées des tendons sains, le métabolisme aberrant des protéoglycanes associé à une formation excessive de fibrocartilage est une caractéristique caractéristique de la tendinopathie, une maladie courante et débilitante qui émerge de manière disproportionnée dans les tendons chroniquement touchés1,40,41,42,43,44,45,46,47,48,49. En conséquence, le conflit tendineux est cliniquement reconnu comme un facteur extrinsèque important à l’origine de plusieurs des tendinopathies les plus courantes, notamment la maladie de la coiffe des rotateurs et la tendinopathie d’Achille insertionnelle (IAT)50,51,52. À l’heure actuelle, le traitement de la tendinopathie est inefficace. Par exemple, environ 47 % des patients atteints d’IAT nécessitent une intervention chirurgicale après l’échec d’une prise en charge conservatrice, avec des résultats postopératoires variables53,54,55,56. Malgré la relation apparente entre le conflit et la tendinopathie, les mécanismes mécanobiologiques par lesquels les cellules du tendon touché perçoivent et réagissent à leur environnement mécanique sont mal décrits, ce qui obscurcit la compréhension de la pathogenèse de la tendinopathie et entraîne un traitement inadéquat.

Les modèles d’explants sont des outils utiles dans l’étude de la mécanobiologie tendineuse57,58. Comme première étape vers la compréhension de la mécanobiologie du conflit tendonin, plusieurs études antérieures ont exploré la réponse cellulaire suite à l’application d’une compression uniaxiale simple à des cellules ou d’explants tendineux excisés 27,29,30,31,32,33,34,39. Cependant, les cellules in vitro manquent de matrices extracellulaires et péricellulaires qui facilitent le transfert de souches, séquestrent d’importants facteurs de croissance et cytokines libérés par la déformation mécanique, et fournissent un substrat pour les complexes d’adhésion focaux qui jouent un rôle dans la mécanotransduction57,59. De plus, les études in vitro et excisées ne parviennent pas à récapituler l’environnement de déformation mécanique multiaxiale généré par le conflit tendineux in vivo, qui dépend des caractéristiques anatomiques de la région touchée 5,6. Dans le contexte de l’insertion du tendon d’Achille touché, cela inclut les tissus environnants tels que la bourse rétrocalcanéenne et le coussinet adipeux de Kager 60,61,62,63. À l’inverse, les modèles in vivo de conflit tendineux 25,28,36,37,38,64,65,66 permettent un contrôle minimal de l’amplitude et de la fréquence de la charge appliquée directement au tendon, ce qui est une limitation bien connue des modèles in vivo pour l’étude de la mécanobiologie tendineuse57,58,67,68,69,70. Compte tenu des difficultés rencontrées dans la mesure de la déformation des tendons in vivo, l’environnement de déformation interne généré dans ces modèles est souvent mal caractérisé.

Dans ce manuscrit, nous présentons une plate-forme expérimentale personnalisée qui recrée l’empiètement de l’insertion du tendon d’Achille sur le calcanéum dans des explants entiers de membres postérieurs murins qui, lorsqu’elle est associée à ce protocole de culture tissulaire, maintient la viabilité pendant 7 jours en culture d’explants et permet d’étudier les séquelles biologiques du conflit tendineux. La plate-forme est construite sur une base d’acide polylactique (PLA) imprimée en 3D qui constitue la base de la fixation des poignées et de l’insert de réduction de volume PLA imprimé en 3D. Les poignées sont utilisées pour serrer la partie supérieure de la jambe et du genou à proximité de la jonction myotendineuse d’Achille avec la face caudale du membre postérieur tournée vers le haut, ce qui permet d’imager le tendon d’Achille d’en haut à l’aide d’une sonde à ultrasons ou d’un microscope inversé (Figure 1A). L’insert de réduction de volume glisse le long d’un rail sur la base et réduit le volume requis de milieux de culture tissulaire. Une ligne tressée enroulée autour de la patte arrière est acheminée hors de la plate-forme à l’aide de la conception de base et d’un clip PLA imprimé en 3D. En tirant sur la corde, la patte arrière est fléchie dorsalement et l’insertion du tendon d’Achille est heurtée contre le calcanéum, ce qui entraîne une contrainte de compression transversale élevée 5,6 (Figure 1A). La plate-forme est contenue dans un bain acrylique qui maintient les explants des membres postérieurs immergés dans des milieux de culture tissulaire. La fixation de la corde tendue à l’extérieur de la baignoire avec du ruban adhésif maintient la dorsiflexion de la cheville pour produire un conflit statique de l’insertion du tendon d’Achille. Les fichiers CAO pour les composants imprimés en 3D sont fournis en plusieurs formats (fichier supplémentaire 1), ce qui permet de les importer dans une gamme de logiciels de CAO commerciaux et gratuits, open-source, pour les modifier en fonction des besoins expérimentaux. Si l’accès aux imprimantes 3D n’est pas disponible pour la fabrication, les fichiers CAO peuvent être fournis aux services d’impression 3D en ligne qui imprimeront et expédieront les pièces à faible coût.

Il est important de noter que le complexe musculo-tendineux triceps surae-Achille s’étend à la fois sur les articulations du genou et de la cheville 71,72,73. Par conséquent, la tension de traction dans le tendon d’Achille est influencée par la flexion du genou. L’extension du genou met le tendon d’Achille sous tension, tandis que la flexion du genou réduit la tension. En étendant d’abord le genou, puis en fléchissant passivement la cheville, les contraintes de compression au niveau de l’insertion heurtée peuvent être superposées aux contraintes de traction. Inversement, en fléchissant passivement la cheville avec le genou fléchi, la tension de traction est réduite et la contrainte de compression persiste. Le protocole actuel explore trois de ces conditions. 1) Pour les conflits statiques, le pied est fléchi dorsivement à < 110° par rapport au tibia pour empiéter sur l’insertion, le genou fléchi pour réduire la tension. 2) Pour le groupe de tension de base, la cheville est étendue au-dessus de 145° de dorsiflexion avec le genou étendu, générant principalement une contrainte de traction à l’insertion. 3) Pour le groupe non chargé, les explants sont cultivés dans une boîte de Pétri avec le genou et la cheville en position neutre en l’absence de charge appliquée à l’extérieur. Les angles mentionnés ci-dessus sont mesurés photographiquement par rapport à un système de coordonnées où le pied et le tibia sont parallèles à un angle de 180° et perpendiculaires à un angle de 90°.

Les étapes clés du protocole comprennent 1) la dissection des explants des membres postérieurs et l’ablation soigneuse de la peau et du tendon plantaire ; 2) culture d’explants après un prétraitement à la dexaméthasone de 48 h ; 3) la coupe des tissus et la coloration histologique ; et 4) l’analyse d’images en couleur pour évaluer la formation du fibrocartilage. Après dissection, chaque explant de membre postérieur est prétraité pendant 48 h dans un milieu de culture complété par de la dexaméthasone74. Les membres controlatéraux de chaque souris sont assignés à des groupes expérimentaux distincts pour une comparaison par paires, ce qui aide à contrôler la variabilité biologique. Après le prétraitement, les explants sont positionnés dans des plates-formes comme décrit ci-dessus et cultivés pendant 7 jours supplémentaires (Figure 1B). Des comparaisons supplémentaires sont faites avec un groupe prétraité (jour 0) dans lequel les explants sont retirés immédiatement après le prétraitement de 48 h.

Après la culture de l’explantation, les membres postérieurs sont coupés, le formol fixé, décalcifié et noyé dans de la paraffine. La coupe en série en orientation sagittale permet de visualiser le tendon d’Achille de la jonction myotendineuse à l’insertion calcanéenne tout en permettant de suivre la profondeur de la section à travers l’ensemble du tendon. Le marquage dUTP X-nick médié par la désoxynucléotidyl transférase terminale (TdT) est utilisé pour visualiser les dommages à l’ADN secondaires à l’apoptose et évaluer la viabilité. L’histologie du bleu de toluidine et l’analyse personnalisée de l’image couleur sont effectuées pour quantifier les changements dans la coloration GAG. Des coupes de tissus colorés au bleu de toluidine sont ensuite utilisées pour l’imagerie SHG afin de caractériser les altérations de l’organisation des fibres de collage (Figure 1B).

Les résultats représentatifs fournis suggèrent une altération de la coloration histologique de la matrice riche en GAG et une désorganisation du réseau de collagène extracellulaire générée par 7 jours de conflit statique dans le modèle. Ce modèle peut être utilisé pour explorer les mécanismes moléculaires sous-jacents au changement fibrocartilagineux induit par l’impact.

Protocol

Tous les travaux sur les animaux ont été approuvés par le Comité des ressources animales de l’Université de Rochester. 1. Préparation des milieux de culture tissulaire Cultivez tous les explants dans le milieu Eagle modifié de Dulbecco (1x DMEM) avec 1 % v/v de pénicilline-streptomycine et 200 μM d’acide L-ascorbique dans un incubateur à 37 °C et 5 % de CO2. Pour le prétraitement initial de 48 h, cultiver chaque explant dans 70 mL de milieu…

Representative Results

Des images représentatives de coupes de tissus colorés par TUNEL montrent des noyaux apoptotiques minimes dans le corps du tendon d’Achille après 7 jours de culture d’explants dans des groupes expérimentaux (Figure 2A). La quantification de ces images fournit des preuves que le protocole de culture tissulaire maintient jusqu’à 78 % de viabilité en moyenne dans le tendon d’Achille après 7 jours de culture d’explant dans des conditions de charge (Figure 2B…

Discussion

La plate-forme expérimentale d’explants de membres postérieurs murins associée au protocole de culture tissulaire décrit dans cette étude fournit un modèle approprié pour étudier la mécanobiologie de la formation de fibrocartilage induite par le conflit à l’insertion du tendon d’Achille. L’utilité de ce modèle d’explant est démontrée par les résultats représentatifs, qui indiquent un maintien de la viabilité cellulaire concomitant à un changement significatif et spatialement hétérogène de l…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs sont reconnaissants du soutien et de l’aide fournis par Jeff Fox et Vidya Venkatramani du centre d’histologie, de biochimie et d’imagerie moléculaire (HBMI) du Centre de recherche musculo-squelettique de l’Université de Rochester, financé en partie par P30AR06965. De plus, les auteurs tiennent à remercier le Centre de microscopie optique et de nanoscopie (CALMN) du Centre médical de l’Université de Rochester pour son aide en matière de microscopie multiphotonique. Cette étude a été financée par R01 AR070765 et R01 AR070765-04S1, ainsi que par 1R35GM147054 et 1R01AR082349.

Materials

Absorbent underpads VWR 82020-845 For benchtop dissection
Acrylic bath Source One X001G46CB1 Contains the explant platform submerged in culture media
Autoclave bin Thermo Scientific 13-361-20 Used as secondary containment, holds two platforms
Base 3D printed from CAD files provided as Supplementary Files
Braided line KastKing 30lb test Used to wrap around paw and apply ankle dorsiflexion
Clip 3D printed from CAD files provided as Supplementary Files
Cover glass Fisherbrand 12-541-034 Rectangular, No. 2, 50 mm x 24 mm
Cytoseal XYL VWR 8312-4 Xylene-based mounting media for coverslipping Toluidine blue stained tissue sections
Dexamethasone MP Biomedical LLC 194561 CAS#50-02-2
Dimethyl sulfoxide (DMSO), anhydrous Invitrogen by ThermoFisher D12345 CAS#67-68-5, use to solubilize dexamethasone into concentrated stock solutions
Double-sided tape Scotch Brand 34-8724-5195-9 To attach sandpaper to Grip platens
Dulbecco's Modified Eagle Medium (1X DMEM) Gibco by ThermoFisher 11965092 high glucose, (-) pyruvate, (+) glutamine
EDTA tetrasodium salt dihydrate Thermo Scientific Chemicals J15700.A1 CAS#10378-23-1, used to make 14% EDTA solution for sample decalcifcation
Ethanol, 200 proof Thermo Scientific T038181000 CAS#64-17-5, 1 L supply
Foam biopsy pads Leica 3801000 Used with processing cassettes, help hold ankle joints in desired position during fixation and decalcification
Forceps, #SS Standard Inox Dumont 11203-23 Straight, smooth, fine tips
Forceps, Micro-Adson 4.75" Fisherbrand 13-820-073 Straight, fine tips with serrated teeth
Garnet Sandpaper, 50-D Grit Norton M600060 01518 Or other coarse grit sandpaper
Glacial acetic acid Fisher Chemical A38S-500 CAS#64-19-7, for adjusting pH of sodium acetate buffer used for Toluidine blue histology, as well as 14% EDTA decalcification solution
Grips ADMET GV-100NT-A4 Stainless steel vice grips, screws and springs described in the protocol are included
Histobond Adhesive Microscope Slides VWR 16005-108 Sagittal sections of hind limbs explants reliably adhere to these slides through all staining protocols
In situ Cell Death Detection Kit, TMR Red Roche 12156792910 TUNEL assay
Labeling tape Fisherbrand 15-959 Or any other labeling tape of preference
L-ascorbic acid Sigma-Aldrich A4544-100G CAS#50-81-7, for culture media formulation
Neutral buffered formalin, 10% Leica 3800600 For sample fixation, 5 gallon supply
Nunc petri dishes Sigma-Aldrich P7741-1CS 100 mm diameter x 25 mm height, maintain explants submerged in 70 mL of culture media as described in protocol
Penicillin-streptomycin (100X) Gibco by ThermoFisher 15140122 Add 5 mL to 500 mL 1X DMEM for 1% v/v (1X) working concentration
Polylactic acid (PLA) 1.75 mm filament Hatchbox Choose filament diameter compatible with your 3D printer extruder, in color of choice.
Processing cassettes Leica 3802631 For fixation, decalcification and paraffin embedding
Prolong Gold Antifade Reagent with DAPI Invitrogen by ThermoFisher P36931 Mounting media for coverslipping tissue sections after TUNEL
Proteinase K Fisher BioReagents BP1700-50 CAS#39450-01-6, used for antigen retrieval in TUNEL protocol
Scissors, Fine FST 14094-11 Straight, sharp
Slide Staining Set, 12-place Mercedes Scientific  MER 1011 Rack with 12 stain dishes and slide dippers for Toluidine blue histology
Sodium acetate, anhydrous Thermo Scientific Chemicals A1318430 CAS#127-09-3, used to make buffer for Toluidine blue histology
Tissue-Tek Accu-Edge Low Profile Microtome Blades VWR 25608-964 For paraffin sectioning
Toluidine Blue O Thermo Scientific Chemicals 348601000 CAS#92-31-9
Volume Reduction Insert 3D printed from CAD files provided as Supplementary Files
Xylenes Leica 3803665 4 gallon supply for histological staining

References

  1. Cook, J. L., Purdam, C. Is compressive load a factor in the development of tendinopathy. Br J Sports Med. 46 (3), 163-168 (2012).
  2. Benjamin, M., Qin, S., Ralphs, J. R. Fibrocartilage associated with human tendons and their pulleys. J Anat. 187 (Pt 3), 625-633 (1995).
  3. Benjamin, M., Ralphs, J. R. Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat. 193 (4), 481-494 (1998).
  4. Benjamin, M., Theobald, P., Suzuki, D., Toumi, H. The anatomy of the Achilles tendon. The Achilles Tendon. 3, 5-16 (2007).
  5. Chimenti, R. L., et al. Insertional achilles tendinopathy associated with altered transverse compressive and axial tensile strain during ankle dorsiflexion. J Orthop Res. 35 (4), 910-915 (2017).
  6. Mora, K. E., et al. Ultrasound strain mapping of the mouse Achilles tendon during passive dorsiflexion. J Biomech. 132, 110920 (2022).
  7. Pringels, L., et al. Intratendinous pressure changes in the Achilles tendon during stretching and eccentric loading: Implications for Achilles tendinopathy. Scand J Med Sci Sports. 33 (5), 619-630 (2023).
  8. Koob, T. J., Vogel, K. G. Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J Orthop Res. 5 (3), 414-424 (1987).
  9. Vogel, K. G., Koob, T. J. Structural specialization in tendons under compression. Int Rev Cytol. 115, 267-293 (1989).
  10. Vogel, K. G., Ordög, A., Pogány, G., Oláh, J. Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res. 11 (1), 68-77 (1993).
  11. Vogel, K. G., Sandy, J. D., Pogány, G., Robbins, J. R. Aggrecan in bovine tendon. Matrix Biol. 14 (2), 171-179 (1994).
  12. Robbins, J. R., Vogel, K. G. Regional expression of mRNA for proteoglycans and collagen in tendon. Eur J Cell Biol. 64 (2), 264-270 (1994).
  13. Vogel, K., Gordon, S. I., Blair, S. J., Fine, L. J. . Repetitive motion disorders of the upper extremity. , (1995).
  14. Benjamin, M., Tyers, R. N., Ralphs, J. R. Age-related changes in tendon fibrocartilage. J Anat. 179, 127-136 (1991).
  15. Ralphs, J. R., Benjamin, M., Thornett, A. Cell and matrix biology of the suprapatella in the rat: a structural and immunocytochemical study of fibrocartilage in a tendon subject to compression. Anat Rec. 231 (2), 167-177 (1991).
  16. Rufai, A., Benjamin, M., Ralphs, J. R. Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol (Berl). 186 (6), 611-618 (1992).
  17. Rufai, A., Ralphs, J. R., Benjamin, M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat. 189 (Pt 1), 185-191 (1996).
  18. Waggett, A. D., Ralphs, J. R., Kwan, A. P. L., Woodnutt, D., Benjamin, M. Characterization of collagens and proteoglycans at the insertion of the human achilles tendon. Matrix Biol. 16 (8), 457-470 (1998).
  19. Ralphs, J., et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat. 193 (pt 2), 215-222 (1998).
  20. Milz, S., et al. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat. 200 (Pt 2), 145-152 (2002).
  21. Tischer, T., Milz, S., Maier, M., Schieker, M., Benjamin, M. An immunohistochemical study of the rabbit suprapatella, a sesamoid fibrocartilage in the quadriceps tendon containing aggrecan. J Histochem Cytochem. 50 (7), 955-960 (2002).
  22. Esquisatto, M. A., Joazeiro, P. P., Pimentel, E. R., Gomes, L. The effect of age on the structure and composition of rat tendon fibrocartilage. Cell Biol Int. 31 (6), 570-577 (2007).
  23. Matuszewski, P. E., et al. Regional variation in human supraspinatus tendon proteoglycans: Decorin, biglycan, and aggrecan. Connect Tissue Res. 53 (5), 343-348 (2012).
  24. Buckley, M. R., Huffman, G. R., Iozzo, R. V., Birk, D. E., Soslowsky, L. J. The location-specific role of proteoglycans in the flexor carpi ulnaris tendon. Connect Tissue Res. 54 (6), 367-373 (2013).
  25. Gillard, G. C., Reilly, H. C., Bell-Booth, P. G., Flint, M. H. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res. 7 (1), 37-46 (1979).
  26. Giori, N. J., Beaupre, G. S., Carter, D. R. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res. 11 (4), 581-591 (1993).
  27. Wren, T. A., Beaupré, G. S., Carter, D. R. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev. 37 (2), 135-143 (2000).
  28. Malaviya, P., et al. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J Orthop Res. 18 (1), 116-125 (2000).
  29. Shim, J. W., Elder, S. H. Influence of Cyclic Hydrostatic Pressure on Fibrocartilaginous Metaplasia of Achilles Tendon Fibroblasts. Biomech Model Mechanobiol. 5 (4), 247-252 (2006).
  30. Koob, T. J., Clark, P. E., Hernandez, D. J., Thurmond, F. A., Vogel, K. G. Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys. 298 (1), 303-312 (1992).
  31. Evanko, S. P., Vogel, K. G. Proteoglycan Synthesis in Fetal Tendon Is Differentially Regulated by Cyclic Compression in Vitro. Arch Biochem Biophys. 307 (1), 153-164 (1993).
  32. Vogel, K. G. The effect of compressive loading on proteoglycan turnover in cultured fetal tendon. Connect Tissue Res. 34 (3), 227-237 (1996).
  33. Thornton, G. M., et al. Changes in mechanical loading lead to tendon specific alterations in MMP and TIMP expression: influence of stress deprivation and intermittent cyclic hydrostatic compression on rat supraspinatus and Achilles tendons. Br J Sports Med. 44 (10), 698-703 (2010).
  34. Robbins, J. R., Evanko, S. P., Vogel, K. G. Mechanical Loading and TGF-β Regulate Proteoglycan Synthesis in Tendon. Arch Biochem Biophys. 342 (2), 203-211 (1997).
  35. Docking, S., Samiric, T., Scase, E., Purdam, C., Cook, J. Relationship between compressive loading and ECM changes in tendons. Muscles Ligaments Tendons J. 3 (1), 7-11 (2013).
  36. Wang, X., et al. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. J Clin Invest. 128 (2), 846-860 (2018).
  37. Cong, G. T., et al. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: Development and analysis of a novel murine model. J Orthop Res. 36 (10), 2780-2788 (2018).
  38. Liu, Y., et al. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: development and analysis of a novel rat model. J Shoulder Elbow Surg. 31 (9), 1898-1908 (2022).
  39. Majima, T., et al. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J Orthop Res. 18 (4), 524-531 (2000).
  40. Hopkins, C., et al. Critical review on the socio-economic impact of tendinopathy. Asia Pac J Sports Med, Arthrosc, Rehabil Technol. 4, 9-20 (2016).
  41. Scott, A., Ashe, M. C. Common tendinopathies in the upper and lower extremities. Curr Sports Med Rep. 5 (5), 233-241 (2006).
  42. Maffulli, N., Wong, J., Almekinders, L. C. Types and epidemiology of tendinopathy. Clin Sports Med. 22 (4), 675-692 (2003).
  43. Bah, I., et al. Tensile mechanical changes in the Achilles tendon due to Insertional Achilles tendinopathy. J Mech Behav Biomed Mater. 112, 104031 (2020).
  44. Maffulli, N., Reaper, J., Ewen, S. W. B., Waterston, S. W., Barrass, V. Chondral Metaplasia in Calcific Insertional Tendinopathy of the Achilles Tendon. Clin J Sport Med. 16 (4), 329-334 (2006).
  45. Corps, A. N., et al. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatology (Oxford). 45 (3), 291-294 (2006).
  46. Scott, A., et al. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand J Med Sci Sports. 18 (4), 427-435 (2008).
  47. Attia, M., et al. Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score. Br J Sports Med. 48 (6), 469-475 (2014).
  48. Kujala, U. M., Sarna, S., Kaprio, J. Cumulative Incidence of Achilles Tendon Rupture and Tendinopathy in Male Former Elite Athletes. Clin J Sport Med. 15 (3), 133-135 (2005).
  49. Corps, A. N., et al. Changes in matrix protein biochemistry and the expression of mRNA encoding matrix proteins and metalloproteinases in posterior tibialis tendinopathy. Ann Rheum Dis. 71 (5), 746-752 (2012).
  50. Neer, C. S. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 54 (1), 41-50 (1972).
  51. Bigliani, L. U., Ticker, J. B., Flatow, E. L., Soslowsky, L. J., Mow, V. C. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 10 (4), 823-838 (1991).
  52. Chimenti, R. L., Cychosz, C. C., Hall, M. M., Phisitkul, P. Current Concepts Review Update Insertional Achilles Tendinopathy. Foot Ankle Int. 38 (10), 1160-1169 (2017).
  53. Nicholson, C. W., Berlet, G. C., Lee, T. H. Prediction of the Success of Nonoperative Treatment of Insertional Achilles Tendinosis Based on MRI. Foot Ankle Int. 28 (4), 472-477 (2007).
  54. Lohrer, H., David, S., Nauck, T. Surgical treatment for achilles tendinopathy – a systematic review. BMC musculoskelet disord. 17 (1), 207 (2016).
  55. McGarvey, W. C., Palumbo, R. C., Baxter, D. E., Leibman, B. D. Insertional Achilles Tendinosis: Surgical Treatment Through a Central Tendon Splitting Approach. Foot Ankle Int. 23 (1), 19-25 (2002).
  56. Maffulli, N., et al. Surgery for chronic Achilles tendinopathy produces worse results in women. Disabil Rehabil. 30 (20-22), 1714-1720 (1714).
  57. Wunderli, S. L., Blache, U., Snedeker, J. G. Tendon explant models for physiologically relevant in vitro study of tissue biology – a perspective. Connect Tissue Res. 61 (3-4), 262-277 (2020).
  58. Dyment, N. A., et al. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res. 38 (11), 2318-2330 (2020).
  59. Screen, H. R. C., Berk, D. E., Kadler, K. E., Ramirez, F., Young, M. F. Tendon Functional Extracellular Matrix. J Orthop Res. 33 (6), 793-799 (2015).
  60. Theobald, P., et al. The functional anatomy of Kager’s fat pad in relation to retrocalcaneal problems and other hindfoot disorders. J Anat. 208 (1), 91-97 (2006).
  61. Ghazzawi, A., Theobald, P., Pugh, N., Byrne, C., Nokes, L. Quantifying the motion of Kager’s fat pad. J Orthop Res. 27 (11), 1457-1460 (2009).
  62. Malagelada, F., et al. Pressure changes in the Kager fat pad at the extremes of ankle motion suggest a potential role in Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 28 (1), 148-154 (2020).
  63. Shaw, H. M., Benjamin, M. Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports. 17 (4), 303-315 (2007).
  64. Soslowsky, L. J., et al. Rotator cuff tendinosis in an animal model: role of extrinsic and overuse factors. Ann Biomed Eng. 30 (8), 1057-1063 (2002).
  65. Schneeberger, A. G., Nyffeler, R. W., Gerber, C. Structural changes of the rotator cuff caused by experimental subacromial impingement in the rat. J Shoulder Elbow Surg. 7 (4), 375-380 (1998).
  66. Croen, B. J., et al. Chronic subacromial impingement leads to supraspinatus muscle functional and morphological changes: Evaluation in a murine model. J Orthop Res. 39 (10), 2243-2251 (2021).
  67. Andarawis-Puri, N., Flatow, E. L. Tendon fatigue in response to mechanical loading. J Musculoskelet Neuronal Interact. 11 (2), 106-114 (2011).
  68. Gains, C. C., Giannapoulos, A., Zamboulis, D. E., Lopez-Tremoleda, J., Screen, H. R. C. Development and application of a novel in vivo overload model of the Achilles tendon in rat. J Biomech. 151, 111546 (2023).
  69. Williamson, P. M., et al. A passive ankle dorsiflexion testing system to assess mechanobiological and structural response to cyclic loading in rat Achilles tendon. J Biomech. 156, 111664 (2023).
  70. Pedaprolu, K., Szczesny, S. E. A Novel, Open-Source, Low-Cost Bioreactor for Load-Controlled Cyclic Loading of Tendon Explants. J Biomech Eng. 144 (8), 084505 (2022).
  71. Orishimo, K. F., et al. Effect of Knee Flexion Angle on Achilles Tendon Force and Ankle Joint Plantarflexion Moment During Passive Dorsiflexion. J Foot Ankle Surg. 47 (1), 34-39 (2008).
  72. Liu, C. L., et al. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep. 10 (1), 6643 (2020).
  73. Cruz-Montecinos, C., et al. Soleus muscle and Achilles tendon compressive stiffness is related to knee and ankle positioning. J Electromyogr Kinesiol. 66, 102698 (2022).
  74. Connizzo, B. K., Grodzinsky, A. J. Lose-dose administration of dexamethasone is beneficial in preventing secondary tendon damage in a stress-deprived joint injury explant model. J Orthop Res. 38 (1), 139-149 (2020).
  75. Wunderli, S. L., et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11-26 (2020).
  76. Yabusaki, K., et al. A Novel Quantitative Approach for Eliminating Sample-To-Sample Variation Using a Hue Saturation Value Analysis Program. PloS one. 9 (3), e89627 (2014).
  77. Gao, J., Messner, K., Ralphs, J. R., Benjamin, M. An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol. 194 (4), 399-406 (1996).
  78. Han, S. K., Wouters, W. A. J., Clark, A., Herzog, W. Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res. 30 (3), 475-481 (2012).
  79. Han, W., et al. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur Cell Mater. 27, 321-331 (2014).
  80. Rossetti, L., et al. The microstructure and micromechanics of the tendon-bone insertion. Nat Mater. 16 (6), 664-670 (2017).
  81. Sartori, J., Köhring, S., Witte, H., Fischer, M. S., Löffler, M. Three-dimensional imaging of the fibrous microstructure of Achilles tendon entheses in Mus musculus. J Anat. 233 (3), 370-380 (2018).
  82. Eliasberg, C. D., et al. Identification of Inflammatory Mediators in Tendinopathy Using a Murine Subacromial Impingement Model. J Orthop Res. 37 (12), 2575-2582 (2019).
  83. Zhang, Y., et al. Expression of alarmins in a murine rotator cuff tendinopathy model. J Orthop Res. 38 (11), 2513-2520 (2020).
  84. Zhang, X., et al. Assessment of Mitochondrial Dysfunction in a Murine Model of Supraspinatus Tendinopathy. J Bone Joint Surg. Am. 103 (2), 174-183 (2021).
  85. Liu, Y., et al. The role of Indian Hedgehog Signaling in tendon response to subacromial impingement: evaluation using a mouse model. Am J Sports Med. 50 (2), 362-370 (2022).
  86. Wang, T., et al. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci Transl Med. 13 (582), eabe5738 (2021).
  87. Passini, F. S., et al. Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat Biomed Eng. 5 (12), 1457-1471 (2021).
  88. Jones, D. L., et al. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc Natl Acad Sci U S A. 120 (22), e2211947120 (2023).
  89. Connizzo, B. K., Grodzinsky, A. J. Release of pro-inflammatory cytokines from muscle and bone causes tenocyte death in a novel rotator cuff in vitro explant culture model. Connect Tissue Res. 59 (5), 423-436 (2018).
  90. Rees, S. G., et al. Catabolism of aggrecan, decorin and biglycan in tendon. Biochem J. 350 (Pt 1), 181-188 (2000).
  91. Samiric, T., Ilic, M. Z., Handley, C. J. Large aggregating and small leucine-rich proteoglycans are degraded by different pathways and at different rates in tendon. Eur J Biochem. 271 (17), 3612-3620 (2004).
  92. Rees, S. G., Curtis, C. L., Dent, C. M., Caterson, B. Catabolism of aggrecan proteoglycan aggregate components in short-term explant cultures of tendon. Matrix Biol. 24 (3), 219-231 (2005).
  93. Taye, N., Karoulias, S. Z., Hubmacher, D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res. 38 (1), 23-35 (2020).
  94. Carvalho, H. F., Felisbino, S. L. The development of the pressure-bearing tendon of the bullfrog, Rana catesbeiana. Anat Embryol. 200 (1), 55-64 (1999).
  95. Carvalho, H. F., Felisbino, S. L., Covizi, D. Z., Della Colleta, H. H., Gomes, L. Structure and proteoglycan composition of specialized regions of the elastic tendon of the chicken wing. Cell Tissue Res. 300 (3), 435-446 (2000).
  96. van Sterkenburg, M. N., Kerkhoffs, G. M., Kleipool, R. P., Niek van Dijk, C. The plantaris tendon and a potential role in mid-portion Achilles tendinopathy: an observational anatomical study. J Anat. 218 (3), 336-341 (2011).
  97. Lee, A. H., Elliott, D. M. Comparative multi-scale hierarchical structure of the tail, plantaris, and Achilles tendons in the rat. J Anat. 234 (2), 252-262 (2019).
  98. Lee, A. H., Elliott, D. M. Multi-Scale Loading and Damage Mechanisms of Plantaris and Rat Tail Tendons. J Orthop Res. 37 (8), 1827-1837 (2019).
  99. Fan, H. M., Shrestha, L., Guo, Y., Tao, H. R., Sun, Y. L. The twisted structure of the rat Achilles tendon. J Anat. 239 (5), 1134-1140 (2021).
  100. Cutlip, R. G., Stauber, W. T., Willison, R. H., McIntosh, T. A., Means, K. H. Dynamometer for rat plantar flexor muscles in vivo. Med Biol Eng Comput. 35 (5), 540-543 (1997).
  101. Rijkelijkhuizen, J. M., Baan, G. C., de Haan, A., de Ruiter, C. J., Huijing, P. A. Extramuscular myofascial force transmission for in situ rat medial gastrocnemius and plantaris muscles in progressive stages of dissection. J Exp Biol. 208 (Pt 1), 129-140 (2005).
  102. Saxena, A., Bareither, D. Magnetic Resonance and Cadaveric Findings of the Incidence of Plantaris Tendon. Foot Ankle Int. 21 (7), 570-572 (2000).
  103. dos Santos, M. A., Bertelli, J. A., Kechele, P. R., Duarte, H. Anatomical study of the plantaris tendon: reliability as a tendo-osseous graft. Surg Radiol Anat. 31 (1), 59-61 (2009).
  104. Sartori, J., Köhring, S., Bruns, S., Moosmann, J., Hammel, J. U. Gaining Insight into the Deformation of Achilles Tendon Entheses in Mice. Adv Eng Mater. 23 (11), 2100085 (2021).
check_url/65801?article_type=t

Play Video

Cite This Article
Wise, B. C., Mora, K. E., Lee, W., Buckley, M. R. Murine Hind Limb Explant Model for Studying the Mechanobiology of Achilles Tendon Impingement. J. Vis. Exp. (202), e65801, doi:10.3791/65801 (2023).

View Video