Summary

杂交链式反应 RNA全山荧光 蚊子嗅附物化学感觉基因 的原位 杂交

Published: November 17, 2023
doi:

Summary

本文介绍了进行杂交链式反应 RNA 全座荧光 原位 杂交 (HCR RNA WM-FISH) 所需的方法和试剂,以揭示对蚊子触角和上颌触诊中化学感觉受体基因的空间和细胞分辨率的见解。

Abstract

蚊子是致命疾病的有效载体,可以使用在其嗅觉附属物中表达的化学感觉受体在其化学环境中导航。了解化学感觉受体在外周嗅觉附属物中的空间组织方式,可以深入了解气味如何在蚊子嗅觉系统中编码,并为对抗蚊媒疾病的传播提供新方法。第三代杂交链式反应RNA全座荧光 原位 杂交(HCR RNA WM-FISH)的出现允许多个化学感觉基因的空间定位和同时表达谱。在这里,我们描述了在 按蚊 天线和上颌触诊上执行 HCR RNA WM-FISH 的逐步方法。我们通过检查离子型嗅觉受体的表达谱来研究该技术的敏感性。我们询问所描述的HCR WM-FISH技术是否适用于通过将RNA探针拴在三个光谱不同的荧光团上的多重研究。结果表明,HCR RNA WM-FISH对同时检测触角和上颌触诊嗅觉附肢中的多个化学感觉基因具有很强的敏感性。进一步的研究证明了HCR WM-FISH适用于双RNA和三RNA靶标的共表达谱。当应用修改时,这种技术可以适应于定位其他昆虫物种的嗅觉组织或其他附属物中感兴趣的基因。

Introduction

冈比亚按蚊等蚊媒依靠在其外周嗅觉附属物中表达的丰富的化学感觉基因库,在复杂的化学世界中茁壮成长,并识别来自人类宿主的行为相关气味,检测花蜜来源,并定位产卵部位1。蚊子触角和上颌触诊富含化学感觉基因,这些基因驱动这些嗅觉附属物的气味检测。三大类配体门控离子通道驱动蚊子嗅觉附属物的气味检测:气味受体 (OR),它与专性气味受体共受体 (Orco) 一起发挥作用;离子型受体 (IR),与一个或多个 IR 辅助受体(IR8a、IR25a 和 IR76b)相互作用;化学感觉味觉受体 (GR),它作为三种蛋白质的复合物来检测二氧化碳 (CO21,2

RNA荧光原位杂交是检测内源性mRNA3表达的有力工具通常,该方法使用荧光团标记的单链核酸探针,其序列与靶 mRNA 互补。荧光RNA探针与靶RNA的结合可以鉴定表达目标转录本的细胞。最近的进展现在能够检测整个蚊子组织中的转录本 4,5。第一代杂交链式反应(HCR)技术使用基于RNA的HCR扩增器;这在第二代方法中得到了改进,该方法将工程DNA用于HCR扩增6,7。这一升级使信号增加了 10 倍,生产成本大幅降低,并显著提高了试剂的耐久性 6,7

在方案中,我们描述了第三代HCR全座RNA荧光原位杂交(HCR RNA WM-FISH)方法的利用,该方法旨在检测任何基因的空间定位和表达8,9。这种两步法首先利用对目标 mRNA 具有特异性的核酸探针,但其中也包含启动子识别序列;第二步利用荧光团标记的发夹,该发夹与引发剂序列结合以放大荧光信号(图1)。该方法还允许两个或多个 RNA 探针的多重检测和扩增探针信号,以促进 RNA 检测和定量8。可视化嗅觉附属物中表达的化学感觉基因的转录本丰度和 RNA 定位模式,为了解化学感觉基因功能和气味编码提供了第一线。

Protocol

1. 材料的考虑和准备 确定组织全贴片或冷冻切片是否合适。该协议针对按蚊天线和上颌触诊中RNA的全位原位成像进行了优化,无需冷冻切片。如果样品厚度大于 5 mm,建议进行冷冻切片以使探针穿透。 鉴定感兴趣的基因,并从合适的数据库中复制序列,包括内含子和外显子。将基因序列转录成RNA进行合成。 确定是否从商业供应商处购买探针,或者…

Representative Results

按蚊天线中化学感觉基因的可靠检测我们研究了HCR FISH方法(图1)检测蚊子嗅觉组织中化学感觉受体表达的灵敏度。在之前在雌性按蚊天线上报道的RNA转录数据的指导下,我们生成了靶向各种IR的探针。来自四项独立触角转录组研究的平均转录值显示,与共受体 Ir25a (197 RPKM) 和 Ir76b (193 RPKM) 相比,Ir41t.1 (11 RPKM)、Ir75d (…

Discussion

第三代杂交链式反应 (HCR) 因其灵敏度和稳健性而著称,可以可视化多个 RNA 靶标8。HCR WM-FISH已成功用于果蝇、鸡、小鼠和斑马鱼的胚胎以及线虫和斑马鱼的幼虫10,16,17。蚊子触角和上颌触诊通常容易出现高自发荧光和弱探针穿透,这在进行传统的全位安装方法时尤其具有挑战性。HCR方案中集成…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Margo Herre 和 Leslie Vosshall 实验室分享他们对 埃及伊蚊 嗅觉附属物的原位杂交方案。这项工作得到了美国国立卫生研究院(National Institutes of Health)对C.J.P.(NIAID R01Al137078)的资助,对J.I.R.的HHMI Hanna Gray奖学金,对J.I.R.的约翰霍普金斯大学博士后加速器奖,以及约翰霍普金斯疟疾病研究所对J.I.R.的博士后奖学金。我们感谢约翰霍普金斯疟疾研究所和彭博慈善基金会的支持。

Materials

Amplification buffer Molecular Instruments Molecular Instruments, Inc. | In Situ Hybridization + Immunofluorescence 50 mL
Calcium Chloride (CaCl2) 1M  Sigma-Aldrich  21115-100ML
Chitinase Sigma-Aldrich C6137-50UN
Chymotrypsin Sigma-Aldrich CHY5S-10VL 
Dimethyl sulfoxide (DMSO) Sigma-Aldrich 472301
Eppendorf tube VWR 20901-551 1.5 mL
Forceps Dumont 11251 Number 5
Gel loading tip Costar 4853 1-200 µL tip
Hairpins  Molecular Instruments Molecular Instruments, Inc. | In Situ Hybridization + Immunofluorescence h1 and h2 initiator splits
HEPES (1M) Sigma-Aldrich H0887
IR25a probe Molecular Instruments Probe Set ID: PRK149  AGAP010272
IR41t.1 probe Molecular Instruments  Probe Set ID: PRK978 AGAP004432
IR64a probe Molecular Instruments Probe Set ID: PRK700  AGAP004923
IR75d probe Molecular Instruments Probe Set ID: PRK976 AGAP004969
IR76b probe Molecular Instruments Probe Set ID: PRI998 AGAP011968
IR7t probe Molecular Instruments Probe Set ID: PRL355 AGAP002763
IR8a probe Molecular Instruments Probe Set ID: PRK150 AGAP010411
LoBind Tubes VWR 80077-236 0.5 mL DNA/RNA LoBind Tubes
Magnessium Chloride (MgCl2) 1M Thermo Fisher AM9530G
Methanol Fisher  A412-500
Nuclease-free water Thermo Fisher 43-879-36
Nutator Denville Scientific Model 135 3-D Mini rocker
Orco probe Molecular Instruments Probe set ID PRD954 AGAP002560
Paraformaldehyde (20% ) Electron Microscopy Services  15713-S
Phosphate Buffered Saline (10X PBS) Thermo Fisher AM9625
Probe hybridization buffer Molecular Instruments https://www.molecularinstruments.com/ 50 mL
Probe wash buffer Molecular Instruments Molecular Instruments, Inc. | In Situ Hybridization + Immunofluorescence 100 mL
Proteinase-K Thermo Fisher AM2548
Saline-Sodium Citrate (SSC) 20x  Thermo Fisher 15-557-044
SlowFade Diamond Thermo Fisher  S36972 mounting solution
Sodium Chloride (NaCl) 5M Invitrogen AM9760G
Triton X-100  (10%) Sigma-Aldrich  93443
Tween-20 (10% ) Teknova T0027
Watch glass Carolina 742300  1 5/8" square; transparent

References

  1. Konopka, J. K., et al. Olfaction in Anopheles mosquitoes. Chem Senses. 46, (2021).
  2. Raji, J. I., Potter, C. J. Chemosensory ionotropic receptors in human host-seeking mosquitoes. Curr Opin Insect Sci. 54, 100967 (2022).
  3. Young, A. P., Jackson, D. J., Wyeth, R. C. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 8, e8806 (2020).
  4. Herre, M., et al. Non-canonical odor coding in the mosquito. Cell. 185 (17), 3104-3123.e28 (2022).
  5. Raji, J. I., Konopka, J. K., Potter, C. J. A spatial map of antennal-expressed ionotropic receptors in the malaria mosquito. Cell Rep. 42 (2), 112101 (2023).
  6. Choi, H. M. T., et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol. 28 (11), 1208-1212 (2010).
  7. Choi, H. M. T., Beck, V. A., Pierce, N. A. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano. 8 (5), 4284-4294 (2014).
  8. Choi, H. M. T., et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 145 (12), dev165753 (2018).
  9. Schwarzkopf, M., et al. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development. 148 (22), dev199847 (2021).
  10. Choi, H. M. T., et al. Mapping a multiplexed zoo of mRNA expression. Development. 143 (19), 3632-3637 (2016).
  11. Pitts, R. J., Derryberry, S. L., Zhang, Z., Zwiebel, L. J. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Sci Rep. 7, 40297 (2017).
  12. Rinker, D. C., Zhou, X., Pitts, R. J., Rokas, A., Zwiebel, L. J. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics. 14, 749 (2013).
  13. Maguire, S. E., Afify, A., Goff, L. A., Potter, C. J. Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Rep. 38 (10), 110494 (2022).
  14. Athrey, G., et al. Chemosensory gene expression in olfactory organs of the anthropophilic Anopheles coluzzii and zoophilic Anopheles quadriannulatus. BMC Genomics. 18 (1), 751 (2017).
  15. Task, D., et al. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife. 11, e72599 (2022).
  16. Shah, S., et al. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development. 143 (15), 2862-2867 (2016).
  17. Trivedi, V., Choi, H. M. T., Fraser, S. E., Pierce, N. A. Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos. Development. 145 (1), dev156869 (2018).
  18. Herre, M., Greppi, C. RNA in situ hybridization and immunohistochemistry to visualize gene expression in peripheral chemosensory tissues of mosquitoes. Cold Spring Harb Protoc. 2023 (1), 48-54 (2023).
  19. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat Methods. 18 (1), 9-14 (2021).
check_url/65933?article_type=t

Play Video

Cite This Article
Raji, J. I., Potter, C. J. Hybridization Chain Reaction RNA Whole-Mount Fluorescence In situ Hybridization of Chemosensory Genes in Mosquito Olfactory Appendages. J. Vis. Exp. (201), e65933, doi:10.3791/65933 (2023).

View Video