Summary

使用 离体 实时成像研究小鼠牙齿更新过程中的细胞分裂和运动

Published: October 27, 2023
doi:

Summary

离体 实时成像是一种强大的技术,用于研究活组织中细胞运动和相互作用的动态过程。在这里,我们提出了一种方案,该方案实施双光子显微镜以实时跟踪培养的全成年小鼠门牙中的牙齿上皮细胞。

Abstract

不断生长的小鼠门牙正在成为一种高度易于处理的模型系统,用于研究成人上皮和间充质干细胞的调节以及牙齿再生。这些祖细胞群积极分裂、移动和分化,以维持组织稳态并以响应性方式再生丢失的细胞。然而,使用固定组织切片的传统分析无法捕捉细胞运动和相互作用的动态过程,限制了我们研究其调控的能力。本文描述了一种在外植体培养系统中维持整个小鼠门牙并使用多光子延时显微镜实时跟踪牙齿上皮细胞的方案。这项技术增加了我们现有的牙科研究工具箱,并允许研究人员获得有关活组织中细胞行为和组织的时空信息。我们预计这种方法将帮助研究人员进一步探索控制牙齿更新和再生过程中发生的动态细胞过程的机制。

Introduction

在过去的二十年中,小鼠门牙已成为研究成体干细胞调节和牙齿再生原理的宝贵平台1,2。小鼠门牙在动物的一生中不断生长并自我更新。它通过维持上皮干细胞和间充质干细胞来做到这一点,这些干细胞可以自我更新并分化成牙齿的不同细胞类型 1,2。牙科上皮干细胞产生分泌牙釉质基质的成釉细胞,而牙科间充质干细胞产生成牙细胞、牙质母细胞和成纤维细胞,分别形成牙本质、牙骨质和牙周韧带 3,4,5,6。这种新细胞的持续供应维持了组织稳态,并允许更换因咀嚼磨损或损伤而丢失的旧细胞7,8。因此,阐明调节牙科干细胞维持和分化的细胞和分子机制对于理解牙齿再生至关重要,这是一个越来越受关注的领域。

在解剖学上,成年小鼠门牙的很大一部分被包裹在颌骨中。当牙齿的切口边缘暴露时,门牙的顶端适合牙槽内,并通过牙周韧带和结缔组织牢固地附着在周围的骨骼上(图1A,B)。门牙的顶端也是牙齿的生长区域,在上皮层和间充质牙髓中维持牙干细胞和祖细胞9,10,11,12,13。具体来说,牙科上皮干细胞维持在上皮的球状末端,称为顶芽,也称为唇颈袢(图1C)。与肠上皮和表皮类似,门牙的上皮更新主要由活跃的循环干细胞及其高度增殖的中间后代(称为转运扩增细胞14,15,16,17)支持,两者都位于宫颈袢的内部。然而,门牙上皮在再生过程中是否含有和利用静止干细胞仍有待确定。相比之下,在顶端牙髓中发现了活性和静止的牙科间充质干细胞,并且静止干细胞作为储备细胞群发挥作用,在损伤修复过程中被激活13,18

许多关于小鼠门牙更新和再生生物学的发现都是从组织学研究中获得的,其中样本在不同的时间节点获得,固定,处理,然后沿特定平面切成微米薄的切片。通过对不同小鼠模型的组织学切片进行详细分析,科学家们已经确定了不同祖细胞群的细胞谱系,以及控制门牙稳态和损伤修复的遗传和信号通路19,20,21.然而,切片中非生命细胞的静态二维 (2D) 图像无法捕捉活组织中细胞行为和空间组织的全部光谱,例如细胞形状变化、运动和细胞动力学。检测和测量这些快速的细胞变化,这些变化发生在无法通过组织切片解决的时间尺度上,需要不同的策略。此外,获取这些信息对于了解牙齿细胞如何相互作用、对不同的信号刺激做出反应以及自组织以维持组织结构和功能也至关重要。

使用双光子显微镜22 的四维 (4D) 深层组织成像的出现,是一种将三个空间维度与时间分辨率相结合的技术,通过能够对培养的组织外植体、类器官甚至原位组织进行时空检查,克服了组织学分析的固有局限性 23,24,25,26 .例如,发育中的牙齿上皮的 4D 实时成像揭示了细胞分裂和迁移的时空模式,这些模式协调组织生长、信号转导中心形成和牙齿上皮形态发生 27,28,29,30,31,32.在成年小鼠门牙中,4D成像最近被用于研究牙齿上皮损伤修复过程中的细胞行为。实时成像显示,基底上层的中间层细胞可以直接转化为基底层的成釉细胞,使受损的上皮细胞再生,挑战了上皮损伤修复的传统范式15

在这里,我们描述了成年小鼠门牙的解剖、培养和成像,重点是唇颈袢中的上皮细胞(图 1)。该技术可保持牙细胞活力超过 12 小时,并允许以单细胞分辨率实时跟踪荧光标记的细胞。这种方法可以研究细胞运动和迁移,以及正常培养条件下细胞形状和分裂方向的动态变化,或对遗传、物理和化学扰动的反应。

Protocol

所有小鼠均保存在加州大学洛杉矶分校(UCLA)或耶路撒冷希伯来大学(HUJI)的无病原体动物设施中。所有涉及小鼠的实验均根据各自机构动物护理和使用委员会 (IACUC) 批准的法规和协议进行 (ARC-2019-013;加州大学洛杉矶分校)或(MD-23-17184-3;HUJI)。实验步骤的一般工作流程如 图2A所示。有关本协议中使用的所有仪器、试剂和材料的详细信息,请参阅 材料表 ?…

Representative Results

成年小鼠门牙的顶端区域被包裹在下颌骨内(图1),因此,不能直接进入以可视化和实时跟踪居住在生长区域内的祖细胞。因此,我们开发了一种从颌骨中提取整个门牙并将其保存在外植体培养系统中进行双光子延时显微镜的方法(图2)。在这里,我们描述了捕捉上皮唇颈袢区域细胞增殖和运动的动态过程的代表性结果。 为了演…

Discussion

活体组织成像是一种重要的技术,使我们能够研究细胞在其生态位环境中维持时的动态过程和行为41。理想情况下,实时成像是在 体内以高 时空分辨率进行的。然而,由于组织不可接近、光学不透明以及难以长时间固定动物或器官,哺乳动物器官的 体内 成像可能具有挑战性42。组织外植体绕过了其中一些挑战,并已在许多研究中成功采用,以跟?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢加州大学洛杉矶分校高级光学显微镜/光谱实验室和加州纳米系统研究所的徕卡显微系统卓越中心(RRID:SCR_022789)提供双光子显微镜。AS得到了以色列科学基金会ISF 604-21的支持。JH 得到了 NIH/NIDCR 的R03DE030205和R01DE030471的支持。AS和JH还得到了美国-以色列两国科学基金会(BSF)的资助2021007。

Materials

24 well, flat bottom tissue culture plate Olympus plastics 25-107
25x HC IRAPO motCORR water dipping objective Leica 11507704
Ascorbic acid (Vitamin C) Acros Organics 352685000
D-(+)-Glucose bioxtra  Sigma Aldrich G7528
Delta T system  Bioptechs 0420-4 Including temperature control, culture dishes, and perfusion setup
Dissection microscope- LEICA S9E Leica LED300 SLI
DMEM/F12 Thermo Scientific 11039047 Basal media without phenol red
Feather surgical blade (#15) Feather 72044-15
Fine forceps F.S.T 11252-23
Glutamax  Thermo Scientific 35050-061 Glutamine substitute
Leica SP8-DIVE equipped with a 25X HC IRAPO motCORR water dipping objective  Leica n/a
low-melting agarose NuSieve 50080
non-essential amino acids (100x) Thermo Scientific 11140-050
penicillin–streptomycin Thermo Scientific 15140122 10,000 U/mL 
Petri dish Gen Clone 32-107G 90 mm 
Rat serum Valley Biomedical AS3061SC Processed for live imaging
Razor blade #9 VWR 55411-050
Scalpel handle F.S.T 10003-12
Scissors F.S.T 37133
serrated forceps F.S.T 11000-13
spring scissors F.S.T 91500-09

References

  1. Yu, T., Volponi, A. A., Babb, R., An, Z., Sharpe, P. T. Stem cells in tooth development, growth, repair, and regeneration. Current Topics in Developmental Biology. 115, 187-212 (2015).
  2. Jing, J., et al. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. Frontiers in Dental Medicine. 3, 1068494 (2022).
  3. Harada, H., et al. Localization of putative stem cells in dental epithelium and their association with Notch and Fgf signaling. Journal of Cell Biology. 147 (1), 105-120 (1999).
  4. Warshawsky, H., Smith, C. E. Morphological classification of rat incisor ameloblasts. The Anatomical Record. 179 (4), 423-445 (1974).
  5. Lekic, P., McCulloch, C. A. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. The Anatomical Record. 245 (2), 327-341 (1996).
  6. Takahashi, A., et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proceedings of the National Academy of Sciences. 116 (2), 575-580 (2019).
  7. Ness, A. R. Eruption rates of impeded and unimpeded mandibular incisors of the adult laboratory mouse. Archives of Oral Biology. 10 (3), 439-451 (1965).
  8. Smith, C. E., Warshawsky, H. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. The Anatomical Record. 183 (4), 523-561 (1975).
  9. Seidel, K., et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 137 (22), 3753-3761 (2010).
  10. Juuri, E., et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Developmental Cell. 23 (2), 317-328 (2012).
  11. Biehs, B., et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nature Cell Biology. 15, 846-852 (2013).
  12. Feng, J., Mantesso, A., De Bari, C., Nishiyama, A., Sharpe, P. T. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proceedings of the National Academy of Sciences of the United States of America. 108 (16), 6503-6508 (2011).
  13. Zhao, H., et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 14 (2), 160-173 (2014).
  14. Li, L., Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science. 327 (5965), 542-545 (2010).
  15. Sharir, A., et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nature Cell Biology. 21 (9), 1102-1112 (2019).
  16. Hu, J. K. -. H., et al. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell. 21 (1), 91-106 (2017).
  17. Yu, F., Li, F., Zheng, L., Ye, L. Epigenetic controls of Sonic hedgehog guarantee fidelity of epithelial adult stem cells trajectory in regeneration. Science Advances. 8 (29), (2022).
  18. An, Z., et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nature Communications. 9 (1), 378 (2018).
  19. Balic, A., Thesleff, I. Tissue interactions regulating tooth development and renewal. Current Topics in Developmental Biology. 115, 157-186 (2015).
  20. Yu, T., Klein, O. D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development. 147 (2), (2020).
  21. Krivanek, J., Buchtova, M., Fried, K., Adameyko, I. Plasticity of dental cell types in development, regeneration, and evolution. Journal of Dental Research. 102 (6), 589-598 (2023).
  22. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nature Methods. 2 (12), 932-940 (2005).
  23. Cetera, M., Leybova, L., Joyce, B., Devenport, D. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles. Nature Cell Biology. 20 (5), 541-552 (2018).
  24. Held, M., Santeramo, I., Wilm, B., Murray, P., Lévy, R. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS ONE. 13 (7), 0199918 (2018).
  25. Mesa, K. R., et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. Cell Stem Cell. 23 (5), 677-686 (2018).
  26. Mogollón, I., Ahtiainen, L. Live tissue imaging sheds light on cell level events during ectodermal organ development. Frontiers in Physiology. 11, 818 (2020).
  27. Prochazka, J., et al. Migration of founder epithelial cells drives proper molar tooth positioning and morphogenesis. Developmental Cell. 35 (6), 713-724 (2015).
  28. Morita, R., et al. Coordination of cellular dynamics contributes to tooth epithelium deformations. PLOS ONE. 11 (9), 0161336 (2016).
  29. Ahtiainen, L., Uski, I., Thesleff, I., Mikkola, M. L. Early epithelial signaling center governs tooth budding morphogenesis. The Journal of Cell Biology. 214 (6), 753-767 (2016).
  30. Panousopoulou, E., Green, J. B. A. Invagination of ectodermal placodes is driven by cell intercalation-mediated contraction of the suprabasal tissue canopy. PLoS biology. 14 (3), 1002405 (2016).
  31. Mogollón, I., Moustakas-Verho, J. E., Niittykoski, M., Ahtiainen, L. The initiation knot is a signaling center required for molar tooth development. Development. 148 (9), (2021).
  32. Kim, R., et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development. 148 (14), 199685 (2021).
  33. Takahashi, M., Makino, S., Kikkawa, T., Osumi, N. Preparation of rat serum suitable for mammalian whole embryo culture. Journal of Visualized Experiments JoVE. (90), e51969 (2014).
  34. Katsuragi, Y., et al. Bcl11b transcription factor plays a role in the maintenance of the ameloblast-progenitors in mouse adult maxillary incisors. Mechanisms of Development. 130 (9-10), 482-492 (2013).
  35. Dassule, H. R., Lewis, P., Bei, M., Maas, R., McMahon, A. P. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 127 (22), 4775-4785 (2000).
  36. Belteki, G., et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Research. 33 (5), 51 (2005).
  37. Tumbar, T., et al. Defining the epithelial stem cell niche in skin. Science. 303 (5656), 359-363 (2004).
  38. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45 (9), 593-605 (2007).
  39. Kimura, H., Cook, P. R. Kinetics of core histones in living human cells. The Journal of Cell Biology. 153 (7), 1341-1354 (2001).
  40. Kanda, T., Sullivan, K. F., Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology: CB. 8 (7), 377-385 (1998).
  41. Huang, Q., et al. The frontier of live tissue imaging across space and time. Cell Stem Cell. 28 (4), 603-622 (2021).
  42. Skylaki, S., Hilsenbeck, O., Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology. 34 (11), 1137-1144 (2016).
  43. Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell. 132 (4), 583-597 (2008).
  44. Li, S., et al. Overview of the reporter genes and reporter mouse models. Animal Models and Experimental. 1 (1), 29-35 (2018).
  45. Mort, R. L., et al. Fucci2a: a bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice. Cell Cycle. 13 (17), 2681-2696 (2014).
  46. Krivanek, J., et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications. 11 (1), 4816 (2020).
  47. Dailey, M. E., Marrs, G. S., Kurpius, D. Maintaining live cells and tissue slices in the imaging setup. Cold Spring Harbor protocols. 2011 (4), (2011).
  48. Gorczyca, W., Bruno, S., Darzynkiewicz, R., Gong, J., Darzynkiewicz, Z. DNA strand breaks occurring during apoptosis – their early insitu detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. International Journal of Oncology. 1 (6), 639-648 (1992).
  49. Aguilera-Castrejon, A., et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature. 593 (7857), 119-124 (2021).
  50. Wale, P. L., Gardner, D. K. Time-lapse analysis of mouse embryo development in oxygen gradients. Reproductive Biomedicine Online. 21 (3), 402-410 (2010).
  51. Tse, H. M., Gardner, G., Dominguez-Bendala, J., Fraker, C. A. The importance of proper oxygenation in 3D culture. Frontiers in Bioengineering and Biotechnology. 9, 634403 (2021).
  52. Spinelli, J. B., et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science. 374 (6572), 1227-1237 (2021).
  53. Johnson, S., Rabinovitch, P. Ex-vivo imaging of excised tissue using vital dyes and confocal microscopy. Current Protocols in Cytometry. , (2012).
  54. Combs, C. A., Shroff, H. Fluorescence microscopy: a concise guide to current imaging methods. Current Protocols in Neuroscience. 79, 1-25 (2017).
  55. McCoy, R. J., O’Brien, F. J. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Engineering. Part B, Reviews. 16 (6), 587-601 (2010).
  56. Chen, K. D., et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. The Journal of Biological Chemistry. 274 (26), 18393-18400 (1999).
  57. Seddiqi, H., et al. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Computers in Biology and Medicine. 124, 103826 (2020).
check_url/66020?article_type=t

Play Video

Cite This Article
Sundari Thooyamani, A., Shahin, E., Takano, S., Sharir, A., Hu, J. K. Using Ex Vivo Live Imaging to Investigate Cell Divisions and Movements During Mouse Dental Renewal. J. Vis. Exp. (200), e66020, doi:10.3791/66020 (2023).

View Video