JoVE Science Education
Biochemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Biochemistry
Metabolic Labeling
  • 00:00Overview
  • 00:31Principles of Metabolic Labeling
  • 03:39Isotopic Labeling Procedure
  • 05:30Photoreactive Labeling Procedure
  • 06:31Applications
  • 08:06Summary

Marquage métabolique

English

Share

Overview

Marquage métabolique est utilisé pour sonder les transformations biochimiques et les modifications qui se produisent dans une cellule. Ceci est accompli en utilisant les analogues chimiques qui imitent la structure des biomolécules naturel. Les cellules utilisent analogues dans leurs processus biochimiques endogènes, production de composés qui sont étiquetés. L’étiquette permet l’incorporation de détection et de balises d’affinité, qui peuvent alors servir à élucider les voies métaboliques à l’aide d’autres techniques d’analyse biochimiques, tels que le SDS-PAGE et RMN.

Cette vidéo présente les concepts de métabolique d’étiquetage et de montrer deux procédures général.  Le premier utilise le marquage isotopique, pour caractériser la phosphorylation d’une protéine. La deuxième couvre un étiquetage photoréactive afin de caractériser les interactions protéine-protéine dans un Also trois demandes de marquage métabolique sont présentés : étiquetage des matières végétales, RNA pour mesurer la cinétique de marquage et l’étiquetage des glycanes dans le développement des embryons.

Marquage métabolique est utilisée pour étudier les mécanismes d’une cellule. Ceci est accompli en utilisant les analogues chimiques pour sonder les transformations biochimiques et les modifications qui se produisent. Cette vidéo va montrer les principes de marquage métabolique, typique isotopiques et photoréactive étiquetage des procédures et certaines applications.

Marquage métabolique peut être effectuée à l’aide d’un certain nombre de stratégies. Nous décrirons ici d’étiquetage isotopique photoréactive et bio-orthogonaux.

Marquage isotopique est effectuée à l’aide des analogues structures qui sont chimiquement identiques à leurs équivalents naturels, mais ont des isotopes rares incorporés dans leur structure. Dans cet analogue de L-lysine, les atomes de carbone et d’azote sont remplacés par 13C et 15N. Les cellules cultivées en présence d’isotopiques analogues les intégrera dans leurs structures biochimiques. Les métabolites sont prélevés dans les cellules et purifiés pour l’analyse. Les échantillons avec les isotopes stables sont analysés à l’aide de techniques comme la spectrométrie de masse et spectroscopie RMN. Échantillons avec des étiquettes radioactifs sont analysées à l’aide de films de comptage et de rayons x par scintillation liquide, qui se traduira dans le protocole de marquage isotopique.

Les étiquettes photoréactifs sont des groupes fonctionnels incorporés dans les protéines, qui sont stables jusqu’à exposés aux rayons ultraviolets. Le groupe fonctionnel constitue un radical réactif, qui se lie à la protéine le plus proche. Un exemple courant, photo-L-leucine, contient un anneau de diazirine, qui est une RETICULATION photoréactive. Contrairement au marquage isotopique, il y a quelques chimique dissimilarité entre photo réactifs chimiques analogues et leurs homologues naturels. Les cellules peuvent incorporer préférentiellement composés naturels sur analogues. Par conséquent, il est important d’effectuer le marquage photoréactifs dans un milieu libre de ce composé étant imité. Une fois exposé aux rayons ultraviolets, les groupes photo-réactifs dans une protéine marquée devient instable et très réactif, amenant à réticuler avec les protéines qui interagissent, créant une protéine complexe. Réticulé complexes, agissent comme des instantanés qui peuvent ensuite être analysés à l’aide de SDS-PAGE et les méthodes de spectrométrie de masse. Cela permet de mieux comprendre les réactions qui sont produisent dans la voie métabolique en identifiant l’espèce de réaction et comment ils interagissent en déterminant les sites de liaison.

Bioorthogonal stratégies étiquetage utilisent analogues avec des petits groupes fonctionnels qui n’ont peu ou aucun réactivité avec des biomolécules naturels. Par exemple, les azotures sont petits groupes fonctionnels, dont la réactivité est dite orthogonale aux réactions biochimiques. Dans la ligature de Staudinger, un groupe de phosphine attaque le groupe azido. Cela donne un état de transition qui réagit de façon intramoléculaire avec un ester à proximité, ce qui entraîne un ligand amine-collé. Groupes fonctionnels de bioorthogonal incorporés dans les biomolécules peut être ligaturés avec des balises de détection comme des groupes fonctionnels fluorescents et affinité tags comme antigènes.

Maintenant que certains concepts et stratégies pour l’étiquetage métaboliques ont été discutées, examinons le processus en laboratoire.

La première étape dans une expérience de marquage métabolique consiste à recueillir de la protéine d’intérêt. Pour ce faire, les cellules sont cultivées sur une plaque et une méthode d’expression sert à promouvoir la synthèse de la protéine désirée. Dans cet exemple, la leucine-rich repeat kinase ou LRRK, sont exprimées. Phosphate disodique, contenant du phosphore radioactif-32, est utilisé comme l’analogue. Mesures appropriées doivent être prises pour protéger contre les rayonnements ionisants. Cela inclut la mise en place d’un espace de travail, porter un équipement de protection et la vérification de la contamination radioactive. Une fois que les mesures de sécurité ont été prises, le milieu contenant les analogues isotopiques est prête. Le milieu de la culture est supprimé et remplacé par celui contenant les analogues chimiques isotopiques et puis incubé. Après incubation, les cellules sont lysées. Le lysat est recueilli et purifié.

Après purification, les protéines sont résolus par SDS-PAGE et puis transférés sur une membrane de PVDF. Autoradiographie est effectuée en exposant la membrane pour film à rayons x et mesurée à l’aide d’un imageur de phosphore. Western Blot est utilisé pour mesurer des niveaux relatifs de protéines dans la membrane PVDF. Dans cet exemple, les niveaux de la phosphorylation de la leucine-rich répéter kinases synthétisé dans 293 t, les cellules ont été mesurés. L’autoradiogram montre combien de phosphore a été incorporé dans la protéine. Western Blot élucide les niveaux des protéines LRRK. Logiciel d’analyse image sert à obtenir des données quantitatives des niveaux de la phosphorylation des protéines.

Dans cette procédure suivante, étiquetage photoréactive est démontrée. Tout d’abord, les cellules sont préparés et mis en culture. L’analogique photoréactive est ajouté aux cellules lors de la phase logarithmique et incubé. Dans cette procédure, p-benzoylphénylalanine est utilisé. Les échantillons sont prélevés sur des intervalles et mettent sur la glace. Les échantillons sont ensuite exposés pour obtenir des instantanés des voies biochimiques au fil du temps. Les protéines d’intérêt sont ensuite purifiés et résolu à l’aide de SDS-PAGE.

Une stratégie d’étiquetage photoréactive servait à identifier les composés qui interagissent avec la protéine d’intérêt. Immunodétection avec Western blotting montre des bandes de protéines qui indiquent des protéines de poids moléculaire plus élevés sont présents dans les échantillons irradiés. Ce sont de réticulation en raison de l’interaction protéine-protéine se produisant au cours de l’irradiation UV.

Maintenant que nous avons passé en revue les procédures de marquage métaboliques, regardons quelques-unes des façons que le processus est utilisé.

Notions de marquage métaboliques peuvent être étendues à des organismes pluricellulaires. Plantes sont cultivées dans un environnement fermé, riches en isotopes stables pour les matières végétales étiquetées produite. Dioxyde de carbone contenant du carbone-13 est ajouté à l’enceinte, tandis que l’azote-15 riche engrais est utilisé. Le produit de la plante récoltée peut aider à répondre aux questions sur le carbone et le cycle de l’écosystème de l’azote.

L’étiquetage permet la séparation des ARN nouvellement synthétisé de l’ARN plus âgé. En changeant la concentration initiale de l’analogique, la cinétique de la synthèse de l’ARN peut être déterminée. Les résultats montrent que la concentration de 4-thiouridine affecte combien nouveaux RNA est transcrit. En outre, les taux d’incorporation de l’étiquette dans l’ARN peuvent être directement quantifiés avec un spectrophotomètre.

À l’aide de chimie de clic établies, glycanes dans un embryon de poisson zèbre peut être étiqueté. Les oeufs sont injectés avec un étiquetage composé qui en résulte dans les étiquettes de l’alcyne sur les glycanes. Les glycanes chez les larves sont ensuite ligaturés à un composé de colorant à l’étape de l’évolution souhaitée. Les glycanes chez les embryons sont ensuite imagés. Glycanes produites à des moments différents peuvent être identifiés par marquage à l’aide de différentes couleurs à différents stades du développement embryonnaire.

Vous avez juste regardé les vidéo de JoVE sur marquage métabolique. Cette vidéo décrit les concepts de marquage métabolique et leurs stratégies, passe deux procédures générales et certaines des utilisations des techniques couverts.

Merci de regarder !

Procedure

Disclosures

No conflicts of interest declared.

Transcript

Metabolic labeling is used to investigate the machinery of a cell. This is accomplished using chemical analogs to probe the biochemical transformations and modifications that occur. This video will show the principles of metabolic labeling, typical isotopic and photoreactive labeling procedures, and some applications.

Metabolic labeling can be conducted using a number of strategies. Here we will describe isotopic, photoreactive, and bio-orthogonal labeling.

Isotopic labeling is performed using structural analogs that are chemically identical to their natural counterparts, but have uncommon isotopes incorporated into their structure. In this L-lysine analog the carbon and nitrogen atoms are replaced with carbon-13 and nitrogen-15. Cells cultured in the presence of isotopic analogs will incorporate them into their biochemical structures. Metabolites are collected from the cells and purified for analysis. Samples with stable isotopes are analyzed using techniques such as mass spectrometry or NMR spectroscopy. Samples with radioactive labels are analyzed using liquid scintillation counting and x-ray films, which will be demonstrated in the isotopic labeling protocol.

Photoreactive labels are functional groups incorporated into proteins, which are stable until exposed to ultraviolet light. The functional group forms a reactive radical, which binds to the nearest protein. A common example, L-photo-leucine, contains a diazirine ring, which is a photoreactive crosslinker. In contrast to isotopic labeling, there is some chemical dissimilarity between photo-reactive chemical analogs and their natural counterparts. Cells may preferentially incorporate natural compounds over analogs. Therefore, it is important to perform photo-reactive labeling in medium free of the compound being mimicked. Once exposed to ultraviolet radiation, the photo-reactive groups in a labeled protein become unstable and highly reactive, causing it to cross-link with interacting proteins, creating a protein complex. Cross-linked complexes, act as snapshots that can then be analyzed using SDS-PAGE and mass spectrometry methods. This provides insights into what reactions are occurring in the metabolic pathway by identifying reaction species and how they interact by determining binding sites.

Bioorthogonal labeling strategies utilize analogs with small functional groups that have little to no reactivity with natural biomolecules. For example, azides are small functional groups, whose reactivity is said to be orthogonal to biochemical reactions. In the Staudinger ligation, a phosphine group attacks the azido group. This yields a transition state that intramolecularly reacts with a nearby ester, resulting in an amine-bonded ligand. Bioorthogonal functional groups incorporated into biomolecules can be ligated with detection tags such as fluorescent functional groups, and affinity tags such as antigens.

Now that some concepts and strategies for metabolic labeling have been discussed, let’s look at the process in the laboratory.

The first step in a metabolic labeling experiment is to collect the protein of interest. To do this, cells are grown on a plate, and an expression method is used to promote synthesis of the desired protein. In this example, leucine-rich repeat kinases, or LRRK, are expressed. Disodium phosphate, containing radioactive phosphorus-32, is used as the analog. Proper measures must be taken to protect against ionizing radiation. This includes setting up a work area, wearing proper protective equipment, and checking for radioactive contamination. Once safety measures have been taken, the medium containing the isotopic analogs is prepared. The medium from the culture is removed and, replaced with one containing the isotopic chemical analogs and then incubated. Following incubation, the cells are lysed. The lysate is collected and purified.

After purification, proteins are resolved using SDS-PAGE and then transferred to a PVDF membrane. Autoradiography is performed by exposing the membrane to x-ray film and measured using a phosphor imager. Western blotting is used to measure relative protein levels in the PVDF membrane. In this example the phosphorylation levels of leucine-rich repeat kinases synthesized in 293T cells were measured. The autoradiogram shows how much phosphorous was incorporated into the protein. Western blotting elucidates the levels of the LRRK proteins. Image analysis software is used to obtain quantitative data of phosphorylation levels of the proteins.

In this next procedure, photoreactive labeling is demonstrated. First, the cells are prepared and cultured. The photoreactive analog is added to the cells at the mid-log phase and incubated. In this procedure p-benzoylphenylalanine is used. Samples are collected over intervals and put on ice. The samples are then exposed to obtain snapshots of the biochemical pathways over time. The proteins of interest are then purified and resolved using SDS-PAGE.

A photoreactive labeling strategy was used to identify compounds that interact with the protein of interest. Immunodetection with Western blotting shows protein bands that indicate higher molecular weight proteins are present in the irradiated samples. These are from cross-linking due to protein-protein interaction occurring during the UV irradiation.

Now that we’ve reviewed metabolic labeling procedures, let’s look at some of the ways the process is used.

Metabolic labeling concepts can be extended to multicellular organisms. Plants are grown in a sealed environment, rich in stable isotopes to produced labeled plant material. Carbon dioxide containing carbon-13 is added to the enclosure, while nitrogen-15 rich fertilizer is used. The resulting harvested plant material can help answer questions about carbon and nitrogen cycling from the ecosystem.

Labeling enables the separation of newly synthesized RNA from older RNA. By changing the initial concentration of analog, the kinetics of new RNA synthesis can be determined. The results show that the concentration of 4-thiouridine affects how much new RNA is transcribed. Additionally, incorporation rates of the label into RNA can be directly quantified with a spectrophotometer.

Using biorthogonal click chemistry, glycans in a zebra fish embryo can be labeled. The eggs are injected with a labeling compound that results in alkyne labels on the glycans. The glycans in the larvae are then ligated to a dye compound at the desired development stage. The glycans in the embryos are then imaged. Glycans produced at different time points can be identified by labeling using different colors at different stages of embryo development.

You’ve just watched JoVE’s video on metabolic labeling. This video described the concepts behind metabolic labeling and their strategies, went over two general procedures, and covered some of the uses of the techniques.

Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Metabolic Labeling. JoVE, Cambridge, MA, (2023).

Related Videos