Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

マウスで睡眠を測定するためのポリグラフ記録手順

Published: January 25, 2016 doi: 10.3791/53678

Introduction

技術の進歩は、多くの場合、神経生物学的プロセスの理解の飛躍を沈殿させています。例えば、ヒト頭皮から記録された電位は、正弦波の形をとった、の周波数は、被験者の覚醒のレベルに直接関連していたことを1929年にハンス・ベルガーの発見は、睡眠 - 覚醒の理解の急速な進歩につながりました同様に動物およびヒトの両方で規制、。1この日にelectroencephlogram(EEG)、筋電図(EMG)と組み合わせて、 すなわち 。骨格筋によって生成され、電気的活動は、ほぼすべての実験的および臨床のデータ「バックボーン」を表しヒトを含む、動物を振る舞うにおける皮質ニューロンの活動と行動や生理機能を相関しようとする評価。最も基本的な睡眠研究室では、これらのEEG記録は、Dを取得し、前記ケーブルベースのシステム( 図1)を用いて実行されますATAは、[ 例えば 、高速フーリエ変換を適用(FFT)アルゴリズム]パターンとスペクトル解析にオフラインで供される記録される対象の警戒状態を決定する。2、3睡眠は急速眼球運動(REM)で構成され、ノンレム(NREM)睡眠。 REM睡眠は、急速な低電圧EEG、ランダムな眼球運動、および筋無緊張、筋肉を効果的に麻痺している状態によって特徴付けられます。身体は、脳の大部分は切断され、深い眠りであるように見えるのに対し、脳活動は、覚醒のに似ているので、REM睡眠はまた、逆説睡眠としても知られています。対照的に、運動ニューロンは、NREM睡眠中に刺激されるが、何の眼球運動は存在しません。脳波の4 Hzの - 人間ノンレム睡眠は、ステージ4は深い眠りまたは徐波睡眠と呼ばれ、0.5の間のデルタ活性を有する大規模な、遅い脳波によって識別される、4段階に分けることができます。一方、ラットのAのような小さい動物でのノンレム睡眠の相間の細分化、NDマウスは、ヒトで見られるように、彼らは睡眠の長い連結期間を持っていない主な理由は、確立されていません。

長年の間、及びEEGの解釈に基づいて、睡眠 - 覚醒の調節のいくつかのモデルは、circuit-および体液性系の両方が提案されています。神経と睡眠の必要性の細胞の基礎あるいは、「スリープ・ドライブは、「未解決のままであるが、覚醒期間中に構築し、睡眠によって放散される恒常的圧力として概念化されています。一説には、内因性somnogenic要因は覚醒時に、それらの緩やかな蓄積が睡眠恒常的圧力の基盤であることを蓄積することです。液性因子によって調節されて眠る最初の正式な仮説が1892年に発表された4ローゼンバウムの仕事に入金されているが、それは石森5、6、独立ピエロン7で、100年以上前、睡眠促進化学物質の存在を実証しました。両研究者は催眠薬物質または「hypnotoxinsは「睡眠不足の犬の脳脊髄液(CSF)中に存在したことを、提案し、実際に証明した。8過去一世紀にわたり睡眠恒常性のプロセスに関与し、いくつかの追加の推定催眠薬の物質が同定されています(レビューについて、参考文献を参照してください。9)、プロスタグランジン(PG)は、D 2、10サイトカイン、11アデノシン、12アナンダミド、13およびウロテンシンIIペプチドを含む。14

初期および中期20 世紀にエコノモ15、16、Moruzziとマーグン17、およびその他による実験研究は、睡眠と覚醒の回線ベースの理論に影響を与えた結果を生成し、ある程度までの当時の体液理論を影睡眠。今日までに、いくつかの「回路モデル」は、それぞれ、(総説については、参考文献18を参照)の品質と量を変化させるデータによって通知、提案されています。一つのモデル例えば、徐波睡眠が前脳基底部におけるコリン作動性ニューロンからのアセチルコリン放出、主にブロカの対角バンドと物質のinominataの水平手足の核のconsisitingエリアのアデノシン媒介阻害を介して生成することが提案されています。 19睡眠/覚醒調節のもう一つの人気モデルは視床下部および脳幹における腹外側視索前野における睡眠導入ニューロンおよびウェイク誘導ニューロン間の相互抑制性の相互作用に基づいて、フリップフロップスイッチ機構について説明しています。18、20、21また、レム睡眠の中と外のスイッチングのために、同様の相互に抑制相互作用は脳幹内の領域のために提案されている、それは腹側中脳水道周囲灰白質、横橋被蓋、およびsublaterodorsal核である。22まとめると、これらのモデルは貴重な証明されていますヒューリスティックと睡眠研究の研究のために与えられた重要な解釈の枠組み。しかし、あなたがた睡眠 - 覚醒周期を調節する分子機構や回路のトンの完全な理解は、そのコンポーネントのより完全な知識が必要になります。以下に詳細ポリグラフ記録するためのシステムは、この目標を支援する必要があります。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

倫理声明:動物を対象とする手順は筑波大学施設内動物実験委員会によって承認されています。

EEG / EMG記録のために電極とケーブルの作製

  1. 以下の手順に従って、EEG / EMGの記録電極を準備します。
    注記:電極は、使い捨てであり、1動物のためにのみ使用することができます。慎重に、すべてのコネクタの配線構成を計画します。正しい方向用のコネクタ上のマークを配置します。
    1. 2センチのステンレス鋼線に4ピン・ヘッダの各端子を半田付けします。簡単に言えば、ピンにワイヤーの一端を保持するワイヤーピンジョイントにホットはんだごてを置き、ちょうど十分なはんだが関節にスムーズに動作することを保証するために、いくつかのはんだを溶かします。ピンにあまりにも多くの熱を加えないように注意してください。それ以外の場合は、ピンの周りのプラスチックが溶けてしまいます。
    2. 先頭にピンヘッダに接続されている2線のそれぞれの自由端をはんだ付けし1.0 mmの直径のステンレス鋼製ねじの。簡単に言えば、ねじ頭部下のスレッドに、ワイヤの自由端を保持するワイヤースクリュージョイントにホットはんだごてを置き、ちょうど十分なはんだが関節にスムーズに動作することを保証するために、いくつかのはんだを溶かします。ネジなしの2線が筋電図記録電極として機能する一方、ネジで2ワイヤは、脳波記録電極として機能します。
    3. EMG信号の品質を高めるために、EMG電極の端で絶縁の1ミリメートルを取り除くためにハサミを使用してください。
    4. 完全EEG / EMGの録音中に電気的なノイズを低減するために細い木の棒や歯のピックを使用してエポキシ系接着剤ですべてのはんだ付けのピンをカバーしています。
  2. 以下に説明するようにスリップリングに電極を接続するためのケーブルを用意します。このケーブルを再利用することができます。
    1. 30 cmのフラットケーブルの線で4ピンFFC / FPCコネクタの各ピンを半田付けします。簡単に言えば、ホットはんだごてを配置し、ピンに電線の被覆をむいた部分を保持ワイヤーピンジョイントの上に、とだけで十分なはんだが関節にスムーズに動作することを保証するために、いくつかのはんだを溶かします。
      注:EEG / EMG記録のために使用される実験動物用ケージの高さに適したフラットケーブルの長さを選択してください。
    2. はんだは、フラットケーブルのもう一方の端のワイヤーの先端にソケットを圧着します。簡単に説明すると、ワイヤの被覆の自由端に圧着ソケットを保持するワイヤーソケットジョイントにホットはんだごてを置き、ちょうど十分なはんだが関節にスムーズに動作することを保証するために、いくつかのはんだを溶かします。
    3. 4位圧着ハウジングにそれぞれ圧着ソケットを挿入します。
    4. 完全に細い木の棒や歯のピックを使用してエポキシ系接着剤で圧着ソケットをカバーしています。

マウスヘッドの電極の2注入(所要時間:約20分)

  1. 手術前にホットビーズ滅菌器内のすべての手術器具を滅菌します。男性のマウスを麻酔(10から20週齢、20〜30グラム)ペントバルビタール(50mg / kg)の腹腔内注射です。マウスが深くつま先をつまんで麻酔されていることを確認した後、バリカンで頭と首の毛を剃ります。
  2. 定位フレームにマウスを移動し、2耳のバーの間の頭を固定します。乾燥を防ぐために、目にワセリンを適用します。アルコールで剃られ、肌を清潔にし、頭蓋骨を露出するようにメスで正中線に沿ってそれをカット。オープン手術領域を維持するために皮膚をクリップ。
  3. 超硬カッター(ドリルサイズ:0.8 mmの直径)を使用して、頭蓋骨の中に、ドリル2穴を、前頭皮質領域(正中線に横1.5ミリメートルをブレグマの1mm前方)上の1つと頭頂領域の上に他の( 1ミリメートルラムダの前方、正中線に横1.5ミリメートル)右半球の、Paxinosとフランクリンの定位座標に応じた。23
  4. 宝石商のドライバーを使用することで、穴にステンレス製脳波記録ネジを配置し、2作る - 各SCRE 2.5ターン皮質の上に硬膜外位置決め用ワット
    注意:脳組織への損傷を防止するにはあまりにも深いネジを挿入しないでください。ネジがしっかりと頭蓋骨に固定されていることを確認してください。これは、複数のレコーディング(典型的には、1ヶ月以上)の長い期間の間に安定したEEG信号を有することが重要です。ウィグリーネジは脳波アーティファクトを生成し、実験スケジュールの終了前にオフに来るかもしれません。
  5. 電極アセンブリ修正歯科用セメントで頭蓋骨とカバーに瞬間接着剤で(参照:セクション1.1を、ピンが上向き)。僧帽筋(首)筋肉のピンセットで二国間の小さな穴を作り、穴にEMG電極として機能するステンレス鋼線を挿入します。筋肉の露出を避けるために絹糸(直径0.1mm)で皮膚を縫合。
  6. 定位フレームからマウスを外します。細菌感染を避けるために、マウスを、アンピシリン(100mg / kg)および腹腔内メロキシカム(1ミリグラム/キログラム)を管理し、それぞれ、手術後の痛みを軽減します。柯熱パッドの上にマウスをEPと、それは胸骨横臥位を維持するのに十分な意識を取り戻したまでそれを監視します。ハウスは、個別に回復中のマウスは、他の動物によって電極の除去を回避し、手術後の最初の日に腹腔内、メロキシカム(1ミリグラム/キログラム)を管理します。

3.記録と脳波/ EMGデータの取得

  1. 1週間の回復期間、住宅防音記録チャンバーに入れた実験ケージに個別に各マウスの後。 12時間の光/ 12時間暗のサイクルを制御し、自動的に23±1℃の周囲温度を維持し、(照度〜100ルクス、08:00に点灯)。
  2. 記録ケーブルにマウスの頭の上にEEG / EMG電極アセンブリを接続します。記録ケーブルが(マウスの動きがケーブルのねじれによって制限されないように設計された)スリップリングおよびEEG / EMG信号増幅器に接続されていることを確認。フィルタEEG / EMG信号(脳波、0.5-64ヘルツ; EMG、16-64 Hz)は、アナログ-デジタル変換器(A / D)で128ヘルツのサンプリングレートでデジタル化し、最終的にはEEG / EMG記録ソフトウェアを実行するコンピュータ(表「材料」、4 番目のエントリに記録下から)。
  3. 記録チャンバー内の3日間 - 2のためのマウスを慣らします。 EEG / EMG記録を腹腔内薬物投与が含まれる場合は、ゆっくり薬物投与時に各慣れ日にマウスを処理します。
  4. その後、EEG / EMG記録ソフトウェア(表「マテリアル」、下から4 番目のエントリ )を起動します。
    1. 「データファイル情報]タブを選択し、ファイル名の横にあるボックスをクリックします。ファイル名を入力し、[保存]をクリックします。
    2. 「記録条件」タブを選択し、記録されるすべてのEEG / EMGチャンネルを選択します。
    3. 「記録条件」タブで、サンプリング周波数(128 Hz)を選択します。
    4. 選択したチャンネルが目に正しく表示されているかどうかを確認してくださいE 'チャンネル情報」タブをクリックします。
    5. 「タイマー設定」タブを選択し、脳波と筋電図を表示するには、「モニター」をクリックします。
    6. EEG / EMG信号が正しく表示されるか確認してください。
    7. 「タイマー設定」タブを選択し、「メインタイマー」領域での記録の開始と終了のクロック時刻を設定します。
    8. 録音を開始するには「タイマー設定」タブの「モニター」をクリックします。
  5. ベースラインの下に録音EEG / EMG信号( すなわち 、自由に振る舞うマウスの睡眠/覚醒行動)と異なる処理条件( 例えば 、カフェインの投与または偽の治療)、数日間。最後の実験日後にペントバルビタール(200mgの/ kg)の腹腔内注射でマウスを安楽死させます。

EEG / EMGデータに基づく行動状態の4得点

  1. EEG / EMG解析のためのソフトウェアを起動します(表「マテリアル」、下から4 番目のエントリ )。手順3で製造したEEG / EMG生データ(.kcdファイル)を開き「スリープ」タブをクリックし、エポックの時間を選択します。 10秒を選択します。
  2. 「スリープ」タブをクリックし、自動的に3段階にすべての10秒エポックを採点する「マルチスクリーニング」を選択( すなわち 、NREMおよびREM睡眠を、および覚醒)脳波と筋電図の振幅の基礎とパワースペクトル解析に脳波の。3
  3. 「脳波のためのFFT条件]をクリックします。
  4. パワースペクトル分析のためのパラメータを設定し、[256基準点(EEGの2秒に相当)、ハニング窓関数、及びエポック当たり5スペクトルの平均]。3「OK」をクリックします。
  5. 自動スクリーニングを開始する「スクリーニング開始]をクリックします。得点データ(.rafファイル)を開きます。
  6. 代表的な結果、 図1B および1を参照してください (自動スクリーニングの結果を確認し、必要に応じて、標準的な基準に基づいて手動でそれらを修正trong>)。2、3簡単に説明すると、クリックして、間違って得点エポック上でマウスの左ボタンを押したまま、誤っ得点エポックの文字列全体にカーソルをドラッグします。マウスの左ボタンを離すと、ポップアップウィンドウに正しい行動の状態を選択します。
    注:時々、2警戒状態間の遷移でのエポックは、一つの状態に明確に得点することは困難です。このような場合には、エポックは、表向きの状態にスコア付けされるべきであり、同じ基準は、データの再現性を保証するために、実験全体を通して同様の時期に適用されるべきです。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

図1Bは、異なる警戒状態でマウスの脳波の例を示します。 表1に示すように、脳波は4 Hz以下デルタリズムで大規模な、遅い脳波を示し、EMGが弱いまたは無信号を持っている場合、エポックは、ノンレム睡眠に分類されます。脳波は、6と10 Hzの間のシータ範囲で急激な低電圧脳波を示し、EMGは低振幅を示している場合エポックは、レム睡眠に分類されます。その他のエポックが覚醒として分類されるべきである( すなわち、低〜中程度の電圧EEGおよびEMG活動の発生)。

例えば、このプロトコルに記載EEG / EMG記録セットアップは、ベースライン条件下またはカフェインで処理した後、睡眠の量およびC57BL / 6マウスの睡眠/覚醒プロファイルを決定するために使用することができる( 図2および3)。

Bの下でこれらの図に見られるように、夜行性動物であるaseline条件、マウスは、暗い1( 図2A)時よりも光期間中の睡眠のより多くの量で、明確な概日睡眠覚醒リズムを示しました。 12時間の光期間中、マウスにはそれぞれ、6.7時間およびNREM及びREM睡眠の0.9時間を示しました。一方、12時間暗期の間に、覚醒は( 図2B)優勢でした。一方、睡眠の質は、覚醒状態およびEEGパワースペクトルの分析( 図2C-F)に基づいて評価することができます。典型的には、EEG及びEMGのポリグラフ記録は、エピソードの継続時間分布を決定し、各警戒状態( 図2C-E)の継続時間、および段階遷移数を意味するために使用することができます。 4 Hzから6 - - 10また、明暗周期( 図2F)の間、マウスにおいてNREMとレム睡眠のための脳波パワースペクトルは、0.5の周波数範囲で強い脳波パワー密度を示しますそれぞれヘルツ、。 NREM及びREM睡眠の混在状態が時々汚染物質であるため、 - (4ヘルツ0.5)には、REM睡眠中のEEGデルタ波の少量を含むことに留意すべきです。

マウスの睡眠-覚醒行動に対する薬物効果を評価するために、24-30脳波と筋電図は、典型的には、2日間連続して記録されています。明期の初期段階で午前10時に1日目に、判断するには、例えば、C57BL / 6マウスのカフェインの覚醒効果は、24匹のマウスは、車両(腹腔内に10ミリリットル/ kgの生理食塩水)で処理しました。次いで、ラットを24時間後にカフェイン(15ミリグラム/ kg)で処理し、警戒状態がオフラインで起きて、レム睡眠とノンレム睡眠に分類した。 図3(a)は、投与後の脳波、筋電図、およびhypnogramsの典型的な例を示していますC57BL / 6マウス中のカフェイン(下ポリグラフのパネル)または車両(上ポリグラフのパネル)。カフェインincre注入( 図3B)の後に3時間のC57BL / 6マウス2.8倍に覚醒の量をASED。

図1
マウスのために1.スリープバイオアッセイシステム図。

EEG信号を監視するために(A)は 、ステンレス鋼製のネジが1半球の前頭皮質及び頭頂領域の上に硬膜外に移植されます。また、EMG活性は、僧帽筋内の左右に配置されたステンレス鋼線によって監視されている。(B)EEG、EMGおよびEEGパワー密度の典型的な例は、10秒間NREMまたはREM睡眠または覚醒状態の間、マウスに。ノンレム睡眠は、脳波は高振幅の波を示します。デルタバンド(0.5から4 Hz)は(左)が支配的です。 ( - 10 Hzの6)支配的である(中央)レム睡眠では、脳波をシータバンドと、低振幅波を示しています。覚醒で、EEGには、周波数が支配的になっていなけれ付き(右)、低振幅波を示しています。 EMG信号は覚醒よりもノンレムとレム睡眠の両方で低くなっている。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図2
EEG / EMG録音によって評価C57BL / 6マウスにおけるベースラインの条件の下で、図2睡眠-覚醒プロファイル。

(A)各行動段階の毎時量の経時変化。白とX -axes上記の黒いバーは、それぞれ、明暗周期を示す。(B)は、各ステージの合計12時間の暗期に比べて光期間中NREMおよびREM睡眠を多く示しているため。 (C)Eの分布を各ステージのpisode時間。各ステージの(D)の平均期間は、暗期中の覚醒のために長いです。(E)は 、各ステージのステージ遷移数がライト期間中に、より頻繁に遷移を示します。NREMの間(F)脳波パワースペクトルそして、レム睡眠は、明暗期間の間に本質的に電力密度の違いを示していません。データは平均±SEMとして提示され (n = 5)。 * P <0.05、** P <0.01、対の両側スチューデントt検定によって評価される。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図3
図EEG / EMG録音によって評価カフェインの3覚醒効果。

"1">(A)を15mg / kgの(下のパネル)の用量で車両(上のパネル)またはカフェインを投与した後の脳波、筋電図、およびhypnogramsの典型的な例。(B)時間コースカフェインで処置したマウスにおける覚醒。(C)カフェインの覚醒注射後3時間の期間にわたって。データは平均±SEMとして提示され (n = 5)。 ** P <0.01ビヒクル注射に比べ、対の両側スチューデントt検定によって評価される。 この図の拡大版をご覧になるにはこちらをクリックしてください。

ノンレム睡眠 レム睡眠 覚醒状態
脳波の振幅高いローロー
ドミナント脳波周波数デルタバンド(0.5から4ヘルツ) シータバンド(6から10ヘルツ) なし
EMG振幅ローロー高い

表1: 一般的な基準は、EEG / EMG信号により行動状況を採点します。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

このプロトコルは、低ノイズ、費用対効果の高い、高スループットの条件で睡眠と覚醒の評価を可能にするEEG / EMGの記録のためのセットアップについて説明します。 EEG / EMG電極ヘッドアセンブリのサイズが小さいために、このシステムは、マウスへの薬物の微量注入、光遺伝学(光ファイバの注入)または同時カニューレ注入と組み合わせて含むイントラ脳実験のための他のインプラントと組み合わせることができます追加の電気信号( 例えば 、反対EEG、電図または局所電場電位)の測定が必要な場合、脳31はまた、多ピンヘッダーに対する電極ヘッドアセンブリの設計は、記録チャネルの数に柔軟性を提供。

しかし、個々の住宅がゆえの行動状態の評価を制限し、このプロトコル、 すなわちで説明ケーブルベースの設計のために必要とされる。、睡眠とWAkefulness、社会的相互作用や複雑な行動試験と組み合わせて用いることができます。遠隔測定デバイスが自分の制限機能、特にバッテリーのコストと寿命がないわけではないが、これらの例では、無線睡眠監視システムは、おそらくより適しています。

EEG / EMG信号の品質 、図1 および1。ウィグリー電極に示す基準に従って行動状態のスコアリングのために重要である( すなわち、ネジ)は、しばしばEEGおよびFFTにアーチファクトが生じる電気ノイズの原因です分析。 EEG信号の品質を完全に電気的なノイズの増加をもたらし、ネジとセメントとの間の気泡を回避するために、歯科用セメントを有する電極のネジをカバーするためにまた、重要です。 EEG信号の品質を視覚的には、高い振幅と低い周波数を有することを確認することにより、明らかに睡眠マウスで確認することができます。

コストとインプラントの電極までの時間は、多くの睡眠研究室のための重要な因子であり、マウスでの睡眠 - 覚醒行動の大規模スクリーニングのための主要な欠点​​と考えられています。ここで説明するEEG / EMG記録システムは、EEG / EMGの記録装置(スリップリング、アンプ用の電極材料、医療用品のコスト(マウス当たり約2ドル)と投資を繰り返し含む、低〜中程度のコストで構築し、運用することができます、およびA / D変換器と、マウス当たりおよそ2,000ドル)。

時間に関しては、熟練した研究者は、20分未満で1マウス用電極注入を締結することができます。したがって、それは、一日あたり20以上のマウスを操作することが可能です。 EEG / EMG測定に基づいて、睡眠の評価の全体的な効率のためのもう一つの重要な要因は、買収およびEEG / EMGデータの自動スコアリングのためのソフトウェアを使用することです。これらの目的のために、商業および社内で開発されたソフトウェアの様々なで使用可能です価格やスコアリング精度の高い変動。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
4-pin header Hirose A3B-4PA-2DSA(71)
Ampicillin Meiji Seika
Analog-to-digital converter Contec AD16-16U(PCIEV)
Caffeine Sigma C0750
Carbide cutter Minitor B1055
Crimp housing Hirose DF11-4DS-2C
Crimp socket Hirose DF11-30SC
Dental cement (Toughron Rebase) Miki Chemical Product
Epoxy adhesive Konishi #16351
FFC/FPC connector Honda Tsushin Kogyo FFC-10BMEP1(B)
Flat cable Hitachi Cable 20528-ST LF
Instant glue (Aron Alpha A) Toagosei N/A
Meloxicam Boehringer Ingelheim N/A
Pentobarbital Kyoritsu Seiyaku N/A
Signal amplifier Biotex N/A
Sleep recording chamber APL N/A
SleepSign software Kissei Comtec N/A for EEG/EMG recording/analysis
Slip ring Biotex N/A
Stainless steel screw Yamazaki N/A φ1.0 × 2.0
Stainless steel wire Cooner Wire AS633

DOWNLOAD MATERIALS LIST

References

  1. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psych. 87 (1), 527-570 (1929).
  2. Tobler, I., Deboer, T., Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 17 (5), 1869-1879 (1997).
  3. Kohtoh, S., et al. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram. Sleep Biol. Rhythm. 6 (3), 163-171 (2008).
  4. Rosenbaum, E. Warum müssen wir schlafen? : eine neue Theorie des Schlafes. , August Hirschwald. (1892).
  5. Kubota, K. Kuniomi Ishimori and the first discovery of sleep-inducing substances in the brain. Neurosci. Res. 6 (6), 497-518 (1989).
  6. Ishimori, K. True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi. 23, 429-457 (1909).
  7. Legendre, R., Pieron, H. Recherches sur le besoin de sommeil consécutif à une veille prolongée. Z. Allegem. Physiol. 14, 235-262 (1913).
  8. Inoué, S., Honda, K., Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain. Res. 69 (1-2), 91-96 (1995).
  9. Urade, Y., Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 15 (6), 411-418 (2011).
  10. Ueno, R., Ishikawa, Y., Nakayama, T., Hayaishi, O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem. Biophys. Res. Commun. 109 (2), 576-582 (1982).
  11. Krueger, J. M., Walter, J., Dinarello, C. A., Wolff, S. M., Chedid, L. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol. 246 (6 Pt 2), R994-R999 (1984).
  12. Porkka-Heiskanen, T., et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 276 (5316), 1265-1268 (1997).
  13. Garcia-Garcia, F., Acosta-Pena, E., Venebra-Munoz, A., Murillo-Rodriguez, E. Sleep-inducing factors. CNS Neurol. Disord. Drug. Targets. 8 (4), 235-244 (2009).
  14. Huitron-Resendiz, S., et al. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. J. Neurosci. 25 (23), 5465-5474 (2005).
  15. Wilkins, R. H., Brody, I. A. Encephalitis lethargica. Arch. Neurol. 18 (3), 324-328 (1968).
  16. von Economo, C. Die encephalitis lethargica. Wien. Klin. Wochenschr. 30, 581-585 (1917).
  17. Moruzzi, G., Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1 (4), 455-473 (1949).
  18. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., Scammell, T. E. Sleep state switching. Neuron. 68 (6), 1023-1042 (2010).
  19. Jones, B. E. Progress in Brain Research. Krnjevic , K., L, D. escarries, S, M. ircea 145, Elsevier. 157-169 (2004).
  20. Saper, C. B., Scammell, T. E., Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 437 (7063), 1257-1263 (2005).
  21. Fort, P., Bassetti, C. L., Luppi, P. H. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur. J. Neurosci. 29 (9), 1741-1753 (2009).
  22. Lu, J., Sherman, D., Devor, M., Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature. 441 (7093), 589-594 (2006).
  23. Paxinos, G., Franklin, K. B. J. The mouse brain in stereotaxic coordinates. , Academic. (2001).
  24. Lazarus, M., et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J. Neurosci. 31 (27), 10067-10075 (2011).
  25. Huang, Z. L., et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8 (7), 858-859 (2005).
  26. Qu, W. M., Huang, Z. L., Xu, X. H., Matsumoto, N., Urade, Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J. Neurosci. 28 (34), 8462-8469 (2008).
  27. Huang, Z. L., et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA. 98 (17), 9965-9970 (2001).
  28. Xu, Q., et al. A mouse model mimicking human first night effect for the evaluation of hypnotics. Pharmacol. Biochem. Behav. 116, 129-136 (2014).
  29. Cho, S., et al. Marine polyphenol phlorotannins promote non-rapid eye movement sleep in mice via the benzodiazepine site of the GABAA receptor. Psychopharmacol. 231 (14), 2825-2837 (2014).
  30. Liu, Y. Y., et al. Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacol. 231 (20), 3973-3985 (2014).
  31. Qu, W. M., et al. Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proc. Natl. Acad. Sci. USA. 103 (47), 17949-17954 (2006).

Tags

神経科学、問題107、行動、脳の状態、筋電、覚醒、電極、手術
マウスで睡眠を測定するためのポリグラフ記録手順
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Oishi, Y., Takata, Y., Taguchi, Y.,More

Oishi, Y., Takata, Y., Taguchi, Y., Kohtoh, S., Urade, Y., Lazarus, M. Polygraphic Recording Procedure for Measuring Sleep in Mice. J. Vis. Exp. (107), e53678, doi:10.3791/53678 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter