Summary

Thermodynamics of Membrane Protein Folding Measured by Fluorescence Spectroscopy

Published: April 28, 2011
doi:

Summary

This video article details the experimental procedure for obtaining the Gibbs free energy of membrane protein folding by tryptophan fluorescence.

Abstract

Membrane protein folding is an emerging topic with both fundamental and health-related significance. The abundance of membrane proteins in cells underlies the need for comprehensive study of the folding of this ubiquitous family of proteins. Additionally, advances in our ability to characterize diseases associated with misfolded proteins have motivated significant experimental and theoretical efforts in the field of protein folding. Rapid progress in this important field is unfortunately hindered by the inherent challenges associated with membrane proteins and the complexity of the folding mechanism. Here, we outline an experimental procedure for measuring the thermodynamic property of the Gibbs free energy of unfolding in the absence of denaturant, ΔH2O, for a representative integral membrane protein from E. coli. This protocol focuses on the application of fluorescence spectroscopy to determine equilibrium populations of folded and unfolded states as a function of denaturant concentration. Experimental considerations for the preparation of synthetic lipid vesicles as well as key steps in the data analysis procedure are highlighted. This technique is versatile and may be pursued with different types of denaturant, including temperature and pH, as well as in various folding environments of lipids and micelles. The current protocol is one that can be generalized to any membrane or soluble protein that meets the set of criteria discussed below.

Protocol

1. Preparation of ~50 nm Diameter Small Unilamellar Vesicles (SUVs) for Membrane Protein Folding A solution of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids in chloroform is purchased and aliquotted into clean glass vials in 20 mg per vial quantities for storage. A layer of nitrogen gas is added to each vial to prevent lipid oxidation, and the vials are sealed with caps and parafilm. The vials are stored in a -20° C freezer until use. A single vial that contains an aliqu…

Discussion

The current protocol describes the generation of unfolding curves of membrane-associated proteins and peptides that contain tryptophan residues. Here, it is assumed that the tryptophan fluorescence reflects whether the protein is folded and inserted into synthetic lipid vesicles, or unfolded in solution. Additional assumptions, such as two-state folding and linear dependence of free energy with denaturant concentration, are made in the current report; modification of these assumptions result in different equations.<sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Beijing Wu for use of her data. This work was supported by an NSF CAREER award to J.E.K.

Materials

Material Name Type Company Catalogue Number Comment
DMPC   Avanti Polar Lipids 850345C  
Urea   MP Biochemicals 04821527  
Potassium Phosphate Dibasic   Fisher P288  
Potassium Phosphate Monobasic   Fisher P285  

References

  1. Shirley, B. A., Shirley, B. A. . Protein Folding and Stability. , 177-190 (1995).
  2. Pace, C. N. Determination and Analysis of Urea and Guanidine Hydrochloride Denaturation Curves. Methods Enzymol. 131, 266-279 (1986).
  3. Lau, F. W., Bowie, J. U. A Method for Assessing the Stability of a Membrane Protein. 生物化学. 36, 5884-5892 (1997).
  4. Burgess, N. K., Dao, T. P., Stanley, A. M., Fleming, K. G. β-Barrel Proteins that Reside in the Escherichia coli Outer Membrane in Vivo Demonstrate Varied Folding Behavior in Vitro. J. Biol. Chem. 283, 26748-26758 (2008).
  5. Booth, P. J., Curnow, P. Folding scene investigation: membrane proteins. Curr. Opin. Struct. Biol. 19, 8-13 (2009).
  6. Hong, H., Tamm, L. K. Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc. Natl. Acad. Sci. U.S.A. 101, 4065-4070 (2004).
  7. Sanchez, K. M., Gable, J. E., Schlamadinger, D. E., Kim, J. E. Effects of Tryptophan Microenvironment, Soluble Domain, and Vesicle Size on the Thermodynamics of Membrane Protein Folding: Lessons from the Transmembrane Protein OmpA. 生物化学. 47, 12844-12852 (2008).
check_url/cn/2669?article_type=t

Play Video

Cite This Article
Schlamadinger, D. E., Kim, J. E. Thermodynamics of Membrane Protein Folding Measured by Fluorescence Spectroscopy. J. Vis. Exp. (50), e2669, doi:10.3791/2669 (2011).

View Video