Summary

协议的射频评估与互动金纳米粒子和生物系统的非侵入性癌症热疗治疗

Published: August 28, 2013
doi:

Summary

我们描述了用于研究的13.56MHz的射频(RF)的相互作用的协议电领域,在这两种非生物和生物系统( 体外 / 体内 )纳米金胶体。这些相互作​​用正在研究用于癌症治疗的应用。

Abstract

癌症疗法的毒性较小和侵入比现有的同行是非常可取的。使用射频电领域的深入渗透到体内,引起毒性最小的,目前正在研究作为非侵入性癌症治疗的可行手段。可以预想到的RF能量与内在化纳米粒子(纳米粒子)的相互作用可以解放热,然后可以引起细胞的过热(热疗),最终结束于细胞坏死。

在非生物系统的情况下,我们提出有关量化由高浓度的NP胶体释放的热​​量详细的协议。对于生物系统,在体外实验的情况下,我们描述了必须坚持,才能有效地揭露癌细胞射频能量而不散装媒体加热工件显著模糊数据的技术和条件。最后,我们给出了一个详细的方法f或体内小鼠模型异位肝癌肿瘤。

Introduction

射频能量的生物组织(由于其固有的介电常数)的吸收导致在升高组织温度作为时间的函数,这最终导致通过热疗细胞死亡。据推测,癌症热疗可通过使用靶向的纳米材料内化的癌细胞内,并作为射频热换能器,使相邻的健康,正常细胞完整的优化。有几份报告已经表明,各种纳米粒子可作为有效的射频热源,其帮助癌症坏死1-4。

在这些方面,金粒子(金纳米粒子)3-5,碳纳米管1,和量子点6,7已经表现出令人兴奋的特性在体外体内射频实验时使用。虽然当暴露在射频领域的这些纳米粒子的加热机制的确切性质仍存在争议,一系列用金纳米粒子基础实验寄予了很大意义上都NP大小和聚集状态。它表明,直径<10nm的金纳米粒子仅当暴露于射频场8将加热。此外,当金纳米粒子聚集该加热机构被显著衰减。这种聚合条件也有效的体外模型放置在endolysomal细胞车厢内优化金纳米粒子的胶体稳定性的有效射频治疗4中的重要性。然而,用于收集和评估该数据的技术和实验原理可能会产生问题,特别是在从NP胶体验证射频热访问的情况下。

一些报告显示,背景离子悬浮液,该纳米颗粒被悬浮在焦耳加热可以是射频产热的主要来源,而不是粒子本身9-12。尽管我们最近的一篇论文8已经验证吨他使​​用RF相互作用从直径小于10纳米的金纳米粒子产生热量,我们的目标是在这篇文章中详细描述了这些协议。

我们还证明了协议和评估金纳米粒子作为体外体内实验为肝癌模型温热热剂中均有效性所需要的技术。虽然我们主要集中于柠檬酸封端的纳米金胶体简单,相同的技术可以被应用到其他金纳米粒子的杂交如抗体和化疗结合的复合物。通过遵循这些原则,实验者应该希望能够快速评估对于任何纳米材料是一种有效的射频感应热温热剂的潜力。

Protocol

一个完整的实验概述如图1所示。 进一步的细节被描述在下面的步骤1月3日。 1。 NP胶体评估射频加热:金纳米粒子为例。 在一般情况下,对于每个样品NP正在研究中,首先通过离心过滤洗涤样品数次,用去离子(DI)水,以去除背景离子和污染物。所有离子和污染物将被从什么时候被洗出液也有类似的射频加热速率(HRS)为去离子水?…

Representative Results

1。评估的NP胶体的射频加热:纳米金作为例子。 下一节1.1后 – 1.2.3期望有5 nm和10 nm的金纳米粒子的直径高度集中,稳定,纯净的解决方案。从500毫升如购买的原液,期望获得至少为4毫升溶液在1000毫克/升的浓度该金纳米粒子,并在此浓度的背景DI水缓冲溶液之间的HR的差值应为〜0.25℃/秒和0.1℃/秒为5 nm和10 nm的金纳米粒子,分别为显示在图2。 2?…

Discussion

这些协议允许实验者充分分析的程度的纳米材料(在这种情况下金纳米粒子)可以增加射频诱导的高热用于癌症治疗。第一个协议,专门处理与分析产热量从高度集中及纯化的金纳米粒子样品。尽管其它研究小组报道的产热主要从该金纳米粒子悬浮于而不是金纳米粒子本身9-11的缓冲器,它们的射频系统中使用的较低的金纳米粒子的浓度,直径> 10nm时,以及具有较低的RF工作功率电电场?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院(U54CA143837),美国国立卫生研究院MD安德森癌症中心支持资助(CA016672),在V基金会(SAC),以及从Kanzius研究基金会(国资委,伊利,宾夕法尼亚州)不受限制的研究经费。我们感谢和Kristine从灰肿瘤外科部,MD安德森癌症中心,对行政协助。

Materials

      Reagent/Material
500 ml gold nanoparticles (5 nm) Ted Pella, INC 15702-5  
Amicon Ultra-4/-15 Centrifugal Filter Units (50 kDa) Millipore UFC805024/UFC910096 (4 ml and 15 ml volumes)
MEM X1 Cell Culture Media Cellgro 10-101-CV (add extra nutrients as necessary)
Fetal Bovine Serum Sigma F4135-500 ml  
Copper Tape Ted Pella 16072  
      Equipment
Kanzius RF System (13.56 MHZ) ThermMed, LLC, Inc. (Erie, PA, USA)    
IR Camera FLIR SC 6000, FLIR Systems, Inc. (Boston, MA, USA) Contact FLIR  
1.3 ml Quartz Cuvette ThermMed, LLC, Inc. (Erie, PA, USA)    
Teflon Sample holder with Rotary Stage ThermMed, LLC, Inc. (Erie, PA, USA)    
SPECTROstar Nano Microplate reader BGM Labtech    
UV-Vis spectrometer Applied Nanofluorescence, Houston, TX) NS1 NanoSpectralyzer  
ICP-OES PerkinElmer Optima 4300 DV  
Zetasizer Malvern Zen 3600 Zetasizer  

References

  1. Gannon, C. J., et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 110, 2654 (2007).
  2. Curley, S. A., Cherukuri, P., Briggs, K., Patra, C. R., Upton, M., Dolson, E., Mukherjee, P. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol. 7, 313 (2008).
  3. Gannon, C. J., Patra, C. R., Bhattacharya, R., Mukherjee, P., Curley, S. A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. Journal of Nanobiotechnology. 6, 2 (2008).
  4. Raoof, M., et al. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine. 8, 1096 (2012).
  5. Glazer, E. S., Massey, K. L., Zhu, C., Curley, S. A. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery. 148, 319 (2010).
  6. Glazer, E. S., Curley, S. A. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer. 116, 3285 (2010).
  7. Glazer, E. S., Curley, S. A. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Therapeutic Delivery. 2, 1325 (2011).
  8. Corr, S. J., Raoof, M., Mackeyev, Y., Phounsavath, S., Cheney, M. A., Cisneros, B. T., Shur, M., Gozin, M., McNally, P. J., Wilson, L. J., Curley, S. A. Citrate-Capped Gold Nanoparticle Electrophoretic Heat Production in Response to a Time-Varying Radiofrequency Electric-Field. J. Phys. Chem. C. 116, 24380 (2012).
  9. Kruse, D. E., et al. A Radio-Frequency Coupling Network for Heating of Citrate-Coated Gold Nanoparticles for Cancer Therapy: Design and Analysis. IEEE Transactions on Biomedical Engineering. 58, 10 (2011).
  10. Li, D., et al. Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles. J. Colloid Interf. Sci. 358, 47 (2011).
  11. Liu, X., Chen, H. J., Chen, X., Parini, C., Wen, D. Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. Nanoscale. , (2012).
  12. Sassaroli, E., Li, K. C. P., O’Neill, B. E. Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study. J. Phys. D App. Phys. 45, 075303 (2012).
  13. Worle-Knirsch, J. M., Pulskamp, K., Krug, H. F. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261 (2006).
check_url/cn/50480?article_type=t

Play Video

Cite This Article
Corr, S. J., Cisneros, B. T., Green, L., Raoof, M., Curley, S. A. Protocols for Assessing Radiofrequency Interactions with Gold Nanoparticles and Biological Systems for Non-invasive Hyperthermia Cancer Therapy. J. Vis. Exp. (78), e50480, doi:10.3791/50480 (2013).

View Video