Summary

Quantitative In vitro Assay to Measure Neutrophil Adhesion to Activated Primary Human Microvascular Endothelial Cells under Static Conditions

Published: August 23, 2013
doi:

Summary

Neutrophil adherence to the activated endothelium at sites of infection is an integral component of the host’s inflammatory response. Described in this report is a neutrophil binding assay that allows for the in vitro quantitation of primary human neutrophil binding to endothelial cells activated by inflammatory mediators under static conditions.

Abstract

The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.

Introduction

Since the vascular endothelium is in direct contact with the circulating blood, it is uniquely situated to initiate a rapid inflammatory response during infection or injury. Endothelial cells (ECs) express pattern recognition receptors that recognize a variety of conserved bacterial components and danger molecules, and receptors for host inflammatory mediators such as TNFα. Activation of these receptors induces ECs to secrete cytokines (e.g. IL-6, IL-8, CXCL1 and CCL2), and to upregulate adhesion molecules (e.g. E/P-selectin, VCAM-1 and ICAM-1) at their cell surface 1,2. These molecules all facilitate the localization of leukocytes to sites of infection and injury in order to clear the host of the infectious agents and initiate tissue repair 3,4.The neutrophil response to infection involves a well-coordinated interplay between the vascular endothelium and the responding neutrophils. Upon EC activation, IL-8 is secreted and forms an intravascular gradient on the endothelium that allows neutrophils to home in to the site of infection or injury 5,6. E/P-selectins mediate neutrophil capture and rolling through relatively weak associations with glycomolecules on the neutrophil cell surface. These interactions, along with IL-8 binding to its cognate receptors, facilitate the robust, integrin-mediated attachment and eventual arrest of neutrophils on the endothelial cell surface 7-10. After arrest, neutrophils can migrate out of the vasculature to the specific sites of infection to directly eliminate pathogens, generate neutrophil extracellular traps to prevent the spread of pathogens, promote wound healing and release additional factors that recruit other leukocytes such as monocytes, macrophages and dendritic cells 11-17.

Described in this report is an in vitro method to quantitate neutrophil adherence to microvascular ECs after activation by the host inflammatory mediator TNFα. This assay is designed to assess the activation of ECs, and not neutrophils. Primary human neutrophils are first isolated using density gradient separation, and are then labeled with calcein acetoxymethyl (AM). Esterases within the live cells hydrolyze calcein AM to the highly fluorescent calcein molecule with an excitation of 492-495 nm and emission of 513-516 nm 18. The fluorescently-labeled neutrophils are then incubated with EC monolayers, and non-adherent neutrophils are subsequently removed. The fluorescence of the remaining, bound neutrophils is then measured using a fluorescence spectrophotometer, and calculated as a percent of total neutrophil fluorescence input per well. This method has the additional advantage that the bound calcein-labeled neutrophils used in spectrophotometry can be directly visualized using fluorescence microscopy to give a more qualitative read out of EC activation. Since this assay is performed under static conditions, only the very initial events that occur in the neutrophil adhesion cascade will be assessed. This is confirmed in this report using E-selectin blocking antibodies to show that neutrophil adherence to TNFα-treated human lung microvascular EC (HMVEC-Lung) monolayers is drastically reduced when the interaction with E-selectin is disrupted.

In addition to TNFα, we have successfully used this assay to determine the extent of human umbilical vein EC (HUVEC) activation by the Toll-like receptor 1/2 agonists peptidoglycan-associated lipoprotein (PAL), murein lipoprotein (MLP) and Pam3Cys and HMVEC-Lung activation by Pam3Cys 19,20. In addition, we successfully used this assay with kinase inhibitors and after RNAi-mediated knockdown of surface and cytoplasmic proteins in HMVEC-Lung, suggesting that this methodology is compatible with a variety of biochemical and screening assays 20. In summary, this assay provides an easy to use, reproducible, more functional way to access the extent of EC activation by inflammatory mediators in vitro.

Protocol

1. Plating and Maintenance of Microvascular Endothelial Cells Thaw and grow your microvascular endothelial cells according to the manufacturers supplied instructions. In this protocol, cells were grown in EGM-2 MV media (Lonza), and it is recommended that all experiments are performed within two weeks of thawing to minimize any variation due to passage number. Our experiments with HMVEC-Lung are performed between passages 4 to 9. Day 1: When cells reach 80-90% confluency, trypsinize and resuspend at…

Representative Results

In order to obtain reliable, reproducible results using a neutrophil binding assay, it is essential that the health and the confluency of the microvascular endothelial cells are optimal on the day of the assay, as illustrated with HMVEC-Lung in Figure 1. In addition, it is imperative that low passage number microvascular ECs are used (i.e. less than 9 passages), and accordingly, we recommend performing all experiments within two weeks of thawing. The health of the neutrophils is also of utmost i…

Discussion

The most critical steps for a successful neutrophil / microvascular endothelial cell adhesion assay are: 1) Use of low passage number (<9), healthy endothelial cells; 2) Maintaining the isolated neutrophils at a low density (i.e. <5 x 106 cells / ml) and using them within two hours of isolation; and 3) Fastidious washing of the calcein AM-labeled neutrophils and use of the calcein AM-labeled neutrophils in a timely fashion to minimize EC contamination and loss of calcein from the neutroph…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the UCSF Department of Anesthesia and Perioperative Care.

Materials

Name of the reagent Company Catalogue number Comments (optional)
HMVEC-Lung Lonza CC-2527
EGM-2 MV Lonza CC-3202
HBSS Life Technologies 14175-095 Can be substituted with any vendor
48-well Tissue Culture Plates BD Falcon 353078
PBS (without phenol red) UCSF Cell Culture Facility CCFAL001 Can be substituted with any vendor
D-PBS (without Ca2+ and Mg2+ and phenol red) UCSF Cell Culture Facility CCFAL003 Can be substituted with any vendor
RPMI-1640 (without phenol red) Life Technologies 11835-030
Polymorphprep Axis-Shield 1114683
calcein AM Life Technologies C3099 (0.995 mM) stock soln
Trypan Blue Solution Sigma-Aldrich T8154
40 μM filters VWR 21008-949 Can be substituted with any vendor
FLUOstar OPTIMA Spectrophotometer BMG LABTECH

References

  1. Ley, K., Laudanna, C., Cybulsky, M. I., Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678-689 (2007).
  2. Collins, T., et al. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 9, 899-909 (1995).
  3. Medzhitov, R. Origin and physiological roles of inflammation. Nature. 454, 428-435 (2008).
  4. Chen, G. Y., Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826-837 (2010).
  5. Middleton, J., et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 91, 385-395 (1997).
  6. Rot, A. Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol. Today. 13, 291-294 (1992).
  7. Detmers, P. A., et al. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J. Exp. Med. 171, 1155-1162 (1990).
  8. Laudanna, C., Kim, J. Y., Constantin, G., Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37-46 (2002).
  9. Simon, S. I., Hu, Y., Vestweber, D., Smith, C. W. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J. Immunol. 164, 4348-4358 (2000).
  10. Zarbock, A., Ley, K. Mechanisms and consequences of neutrophil interaction with the endothelium. The American Journal of Pathology. 172, 1-7 (2008).
  11. Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323-344 (2011).
  12. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303, 1532-1535 (2004).
  13. Kumar, V., Sharma, A. Neutrophils: Cinderella of innate immune system. International Immunopharmacology. 10, 1325-1334 (2010).
  14. McDonald, B., et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 330, 362-366 (2010).
  15. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173-182 (2006).
  16. Soehnlein, O., Lindbom, L., Weber, C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 114, 4613-4623 (2009).
  17. Wilhelmsen, K., Mesa, K. R., Prakash, A., Xu, F., Hellman, J. Activation of endothelial TLR2 by bacterial lipoprotein upregulates proteins specific for the neutrophil response. Innate Immun. 18, 602-616 (2012).
  18. Haugland, R. P., Johnson, I. D., Basey, A. . The Handbook: A Guide to Fluorescent Probes and Labelling Technologies. , (2005).
  19. Shin, H. S., et al. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. J. Immunol. 186, 1119-1130 (2011).
  20. Wilhelmsen, K., Mesa, K. R., Lucero, J., Xu, F., Hellman, J. ERK5 protein promotes, whereas MEK1 protein differentially regulates, the Toll-like receptor 2 protein-dependent activation of human endothelial cells and monocytes. J. Biol. Chem. 287, 26478-26494 (2012).
  21. Pober, J. S., Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803-815 (2007).
  22. Oh, H., Siano, B., Diamond, S. Neutrophil isolation protocol. J. Vis. Exp. (17), e745 (2008).
  23. Nuzzi, P. A., Lokuta, M. A., Huttenlocher, A. Analysis of neutrophil chemotaxis. Methods Mol. Biol. 370, 23-36 (2007).
  24. Garcia-Garcia, E., Uribe-Querol, E., Rosales, C. A simple and efficient method to detect nuclear factor activation in human neutrophils by flow cytometry. J. Vis. Exp. (74), e50410 (2013).
  25. Kuma, Y., et al. BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J. Biol. Chem. 280, 19472-19479 (2005).
  26. Westra, J., Kuldo, J. M., van Rijswijk, M. H., Molema, G., Limburg, P. C. Chemokine production and E-selectin expression in activated endothelial cells are inhibited by p38 MAPK (mitogen activated protein kinase) inhibitor RWJ 67657. International Immunopharmacology. 5, 1259-1269 (2005).
  27. Leeuwenberg, J. F., Jeunhomme, G. M., Buurman, W. A. Adhesion of polymorphonuclear cells to human endothelial cells. Adhesion-molecule-dependent, and Fc receptor-mediated adhesion-molecule-independent mechanisms. Clinical and Experimental Immunology. 81, 496-500 (1990).
  28. Akeson, A. L., Woods, C. W. A fluorometric assay for the quantitation of cell adherence to endothelial cells. Journal of Immunological Methods. 163, 181-185 (1993).
  29. Vaporciyan, A. A., Jones, M. L., Ward, P. A. Rapid analysis of leukocyte-endothelial adhesion. Journal of Immunological Methods. 159, 93-100 (1993).
  30. De Clerck, L. S., Bridts, C. H., Mertens, A. M., Moens, M. M., Stevens, W. J. Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function. Journal of Immunological Methods. 172, 115-124 (1994).
  31. Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., Gimbrone, M. A. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. The Journal of Clinical Investigation. 76, (1985).
  32. Schleimer, R. P., Rutledge, B. K. Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin, and tumor-promoting phorbol diesters. J. Immunol. 136, 649-654 (1986).
  33. Gamble, J. R., Harlan, J. M., Klebanoff, S. J., Vadas, M. A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc. Natl. Acad. Sci. U.S.A. 82, 8667-8671 (1985).
  34. Braut-Boucher, F., et al. A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes. Journal of Immunological Methods. 178, 41-51 (1995).
  35. Ait-Oufella, H., Maury, E., Lehoux, S., Guidet, B., Offenstadt, G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Medicine. 36, 1286-1298 (2010).
  36. Andonegui, G., et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. The Journal of Clinical Investigation. 111, 1011-1020 (2003).
  37. Sharma, J., et al. Lung endothelial cell platelet-activating factor production and inflammatory cell adherence are increased in response to cigarette smoke component exposure. American Journal of Physiology. Lung Cellular and Molecular Physiology. 302, L47-L55 (2012).
  38. Deban, L., Correale, C., Vetrano, S., Malesci, A., Danese, S. Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a Jack of all trades. The American Journal of Pathology. 172, 1457-1466 (2008).
  39. Gross, W. L., Trabandt, A., Csernok, E. Pathogenesis of Wegener's granulomatosis. Annales de Medecine Interne. 149, 280-286 (1998).
  40. Chen, Y., et al. Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery. 62, 1340-1349 (2008).
  41. Martens, C. L., et al. Peptides which bind to E-selectin and block neutrophil adhesion. J. Biol. Chem. 270, 21129-21136 (1995).
check_url/cn/50677?article_type=t

Play Video

Cite This Article
Wilhelmsen, K., Farrar, K., Hellman, J. Quantitative In vitro Assay to Measure Neutrophil Adhesion to Activated Primary Human Microvascular Endothelial Cells under Static Conditions. J. Vis. Exp. (78), e50677, doi:10.3791/50677 (2013).

View Video