Summary

Culture of Isolated Floor Plate Tissue and Production of Conditioned Medium to Assess Functional Properties of Floor Plate-released Signals

Published: February 11, 2014
doi:

Summary

The floor plate is a crucial structure of the developing spinal cord, providing diffusible signals to progenitors and differentiating neurons. We describe a method to produce floor-plate conditioned medium, to apply it to fresh spinal cord tissue, and to assess the consequences on proteins of interest by biochemistry.

Abstract

During development, progenitors and post-mitotic neurons receive signals from adjacent territories that regulate their fate. The floor-plate is a group of glial cells lining the ependymal canal at ventral position. The floor-plate expresses key morphogens contributing to the patterning of cell lineages in the spinal cord. At later developmental stages, the floor-plate regulates the navigation of axons in the spinal cord, acting as a barrier to prevent the crossing of ipsilateral axons and controlling midline crossing by commissural axons1. These functions are achieved through the secretion of various guidance cues. Some of these cues act as attractants and repellents for the growing axons while others regulate guidance receptors and downstream signaling to modulate the sensitivity of the axons to the local guidance cues2,3. Here we describe a method that allows investigating the properties of floor-plate derived signals in a variety of developmental contexts, based on the production of Floor-Plate conditioned medium (FPcm)4-6. We then exemplify the use of this FPcm in the context of axon guidance. First, the spinal cord is isolated from mouse embryo at E12.5 and the floor-plate is dissected out and cultivated in a plasma-thrombin matrix (Figure 1). Second two days later, commissural tissue are dissected out from E12.5 embryos, triturated and exposed to the FPcm. Third, the tissue are processed for Western blot analysis of commissural markers.

Introduction

The floor-plate is a well-known patterning center of the developing spinal cord, playing key roles in the specification of progenitors and postmitotic cell lineages and controlling axon navigation7,8. The experimental procedure described here to produce FPcm allows investigators to assess the functional properties of floor plate-derived signals in a various contexts of developmental processes, from cell patterning and survival to cell and axon migration.

To illustrate the use of such FPcm, dorsal spinal cord tissues containing commissural neurons are dissected, dilacerated and stimulated with the FPcm. The tissues can then be processed for Western blot analysis. This allows investigating regulations of the axon guidance machinery by floor-plate released signals. The method of treatment of dilacerated fresh tissue holds the great advantage of preserving the microenvironment of cells within the tissue. Thus the consequences of the treatment by FPcm or any types of treatment are assessed in a more physiological way than in cell and tissue culture conditions.

Protocol

DAY 1 1. Dissection of the Spinal Cord Floor Plate (FP) from E12.5 Mouse Embryos Note: The entire procedure requires the use of sterile conditions. It is preferable to perform the dissection under a dissection hood to avoid contamination. The surface of the hood should be cleaned with ethanol. All dissection instruments must be sterilized and kept in a sterile Petri dish. The liquids (medium, dissection medium) must be kept closed and put in an ice …

Representative Results

Commissural tissues were treated by the FPcm and the samples were processed for analysis of receptor levels in Western blot. Application of the FPcm was shown to increase the levels of a guidance receptor, PlexinA1, which mediates the sensitivity of commissural axons to the midline repellent Semaphorin3B after crossing (Figure 2). This revealed that signals released by the FP regulate PlexinA1 levels4,6. <i…

Discussion

The production of floor-plate conditioned medium provides an efficient and easy way for assessing the biological properties of floor plate released signals.

The plasma-thrombin matrix provides excellent condition for tissue survival. Nevertheless, this enriched environment might be a limitation for some types of experiments. Thus, the floor plate tissue can also be cultivated in agarose matrix. The quality of the floor plate conditioned medium can be assessed by the detection of known floor-pl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Karine Kindbeiter, Muriel Bozon, and Florie Reynaud for their help. The work is supported by CNRS, ANR YODA program and Labex DevWeCan.

Materials

Name of Reagent/Material Company Catalog Number Comments
REAGENTS REQUIRED
PBS Invitrogen 14190-094
HBSS, Ca2+/Mg2+– free Invitrogen 14170-088
Glucose Sigma G-7021
Neurobasal Invitrogen 21103-049
Plasma Sigma P-3266 1mg/ml (Reconstitute in H2O and filtrate)
Thrombin Sigma T-4648 10mg/ml(Reconstitute in H2O and filtrate)
B27 Invitrogen 17504-044 50X
Hepes (260g/mol) Sigma H-7006
EDTA Sigma E-5513 0,5M pH8
MgCL2 Euromedex 2189 1M
Glycerol VWR 24388.295
IGEPAL Sigma I-3021
Complete Protease inhibitor Cocktail Tablets Roche 04 693 116 001
Sodium Orthovanadate (Na3VO4) Sigma S-6508
distilled H2O
Table 1. Reagents required
TOOLS AND MATERIAL
Surgical scissors Fine Science Tools 14002-12
Adson forceps Fine Science Tools 11027-12
Dumont #5 Fine Tips forceps Fine Science Tools 11254-20
micro knives Fine Science Tools 10136-14
Table 2. Tools and material
Dissection and FP culture
Ethanol 70%
dissection hood
dissection microscope
Petri dishes
glass coverslips 18mm x 18mm
Bunsen gas burner
24 well plate
tissue culture incubator (37°C, 5% CO2, humidity controlled)
Centrifuge
RECIPES
FP culture media
Neurobasal
B27 1/50e dilution from stock
HBSS – Thrombin
HBSS 1 ml
Thrombin 10mg/ml 30 μl
Lysis Buffer pH7,4
Hepes (260 g/mol) 25mM
EDTA (pH8) 5mM
MgCL2 1mM
Glycerol 10%
IGEPAL (NP40) 0.10%
Protease Inhibitor Cocktail 1X
Sodium Orthovanadate 0,2M
H2O
Laemmli Buffer
Tris 0,5M, pH 6,8 375 mM
SDS 6%
Glycerol 60%
DTT 0,6M
Bromophenol blue
H2O

References

  1. Nawabi, H., Castellani, V. Axonal commissures in the central nervous system: how to cross the midline. Cell. Mol. Life Sci. 68, 2539-2553 (2011).
  2. Placzek, M., Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230-240 (2005).
  3. Chedotal, A. Further tales of the midline. Curr. Opin. Neurobiol. 21, 68-75 (1016).
  4. Nawabi, H., et al. A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev. 24, 396-410 (2010).
  5. Ruiz de Almodovar, C., et al. VEGF mediates commissural axon chemoattraction through its receptor Flk1. Neuron. 70, 966-978 (2011).
  6. Charoy, C., et al. gdnf activates midline repulsion by Semaphorin3B via NCAM during commissural axon guidance. Neuron. 75, 1051-1066 (2012).
  7. Kiecker, C., Lumsden, A. The role of organizers in patterning the nervous system. Annu. Rev. Neurosci. 35, 347-367 (2012).
  8. Le Dreau, G., Marti, E. Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev. Neurobiol. 72, 1471-1481 (2012).
  9. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
  10. Eslami, A., Lujan, J. Western blotting: sample preparation to detection. J. Vis. Exp. , (2010).
  11. Salinas, P. C. The morphogen sonic hedgehog collaborates with netrin-1 to guide axons in the spinal cord. Trends Neurosci. 26, 641-643 (2003).
  12. Bechara, A., et al. FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J. 27, 1549-1562 (2008).
check_url/cn/50884?article_type=t

Play Video

Cite This Article
Charoy, C., Arbeille, E., Thoinet, K., Castellani, V. Culture of Isolated Floor Plate Tissue and Production of Conditioned Medium to Assess Functional Properties of Floor Plate-released Signals. J. Vis. Exp. (84), e50884, doi:10.3791/50884 (2014).

View Video