Summary

Visualization of Endoplasmic Reticulum Subdomains in Cultured Cells

Published: February 18, 2014
doi:

Summary

We describe the imaging approaches we use to investigate the distribution and mobility of the transfected fluorescent proteins resident in the endoplasmic reticulum (ER) by means of the confocal imaging of living cells. We also ultrastructurally analyze the effect of their expression on the architecture of this subcellular compartment.

Abstract

The lipids and proteins in eukaryotic cells are continuously exchanged between cell compartments, although these retain their distinctive composition and functions despite the intense interorganelle molecular traffic. The techniques described in this paper are powerful means of studying protein and lipid mobility and trafficking in vivo and in their physiological environment. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are widely used live-cell imaging techniques for studying intracellular trafficking through the exo-endocytic pathway, the continuity between organelles or subcompartments, the formation of protein complexes, and protein localization in lipid microdomains, all of which can be observed under physiological and pathological conditions. The limitations of these approaches are mainly due to the use of fluorescent fusion proteins, and their potential drawbacks include artifactual over-expression in cells and the possibility of differences in the folding and localization of tagged and native proteins. Finally, as the limit of resolution of optical microscopy (about 200 nm) does not allow investigation of the fine structure of the ER or the specific subcompartments that can originate in cells under stress (i.e. hypoxia, drug administration, the over-expression of transmembrane ER resident proteins) or under pathological conditions, we combine live-cell imaging of cultured transfected cells with ultrastructural analyses based on transmission electron microscopy.

Introduction

The discovery of green fluorescent protein (GFP) and its spectral variants, and the parallel development of fluorescence microscopy, have opened up completely new avenues for the investigation of protein behavior in cells. Techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), which are possible because of the intrinsic capacity of fluorophores to extinguish their fluorescence under intense illumination, are based on confocal live-cell imaging and the use of transfected fluorescent fusion proteins1-3. They are widely used to assess not only the localization of proteins, but also their mobility and vesicular transport, which can reveal important clues concerning their function4.

The unique feature of eukaryotic cells is the presence of intracellular compartments that have specific lipid and protein compositions. Although organelles are physically isolated, they need to communicate with each other and share molecular components in order to maintain cellular homeostasis. The secretory pathway guarantees that the proteins and lipids synthesized in the ER reach the correct final destination in which they exert their function. Intracellular organelles can also be connected by dynamic contact sites that allow molecules (lipids) to be directly exchanged between compartments. Moreover, many proteins have to assembled in large heteromeric complexes or associated with specific lipid species (lipid rafts/microdomains) in order to become functionally active or to be transported to their final destination. All of these biological aspects greatly influence the kinetic properties of proteins, and can therefore be appropriately investigated by means of the techniques described below.

Our group has widely used FRAP and FLIP combined with electron microscopy in order to study the architecture of the ER and its different subdomains. The ER is the first station of the secretory pathway and plays a key role in protein and lipid sorting5. It is a highly dynamic organelle whose distinct subdomains reflect its many different functions (i.e. protein and lipid biosynthesis and trafficking, protein folding, Ca2+ storage and release, and xenobiotic metabolism). However, although they are morphologically, spatially, and functionally distinct, these domains are continuous with each other, and their relative abundance can be modified in cells under physiological and pathological conditions. The best known and usually spatially segregated domains of the ER are the nuclear envelope, and the smooth and rough ER; however, we and others have demonstrated that there are ER structures with a more elaborate architecture and three-dimensional organization in various cell types and tissues under physiological conditions that can also be induced by means of stressful stimuli such as hypoxia, drug administration, or the over-expression of ER-resident transmembrane proteins2,6 (and references therein).

We have also recently demonstrated the presence of such structures in cell models of human diseases1,7. Originating from the stacked cisternae of smooth ER, they were given the collective name of organized smooth endoplasmic reticulum (OSER) in 20036, although they are also known as karmellae, lamellae, and crystalloid ER on the basis of their architecture which, like their size, can vary. After the cells are transfected with GFP fused to the cytosolic region of tail-anchored (TA) ER-resident proteins (dEGFP-ER), the weakly dimerizing tendency of GFP in trans dramatically alters the organization and structure of the ER. FRAP and FLIP experiments showed that dEGFP-ER is free to diffuse within OSERs, and the fact that it moves from the reticular ER to the OSER and vice versa indicates that the aggregates are continuous with the surrounding reticular ER. Ultrastructural analysis has allowed us to correlate the fluorescence data with a detailed description of OSER architecture and organization at nanoscale level: OSERs are always made up of stacks of paired cisternae of smooth ER but may have different forms of spatial organization, such as regularly arranged sinusoidal arrays or whorls, or hexagonal "crystalloid" tubular arrays. These rearrangements lead to cubic morphologies8 which, as they have been found in cells under physiological conditions9 and following stresses such as hypoxia10, drug treatment11, and cancer9, may have significant potential as ultrastructural markers.

After this first demonstration using GFP fusion proteins, we used imaging experiments to analyze the proliferation of ER domains in response to pharmacological treatments12, assess the tendency of fluorescent proteins to oligomerise in cells13, and to investigate the role of a mutant, ALS-linked TA protein in the formation of intracellular aggregates of ER origin that may be relevant to its pathogenicity1,8. It has been suggested that the formation of intracellular aggregates (which occurs in many neurodegenerative diseases14) may be a protective mechanism designed to prevent the interactions between toxic mutant proteins and the surrounding cell components15.

What follows is a description of a combination of optical and electron microscopy methods for investigating constructs whose C-terminal hydrophobic domains are inserted into the membrane of the ER, and an analysis of their dynamic behavior and the effects of their over-expression on ER domain architecture in cultured cells (see Figure 1 for a flowchart of the experimental protocol).

Protocol

1. Plasmid, Cell Culture, and Transfection with ER Fluorescent Proteins The plasmid used in this study consists of an enhanced version of GFP fused at its C-terminus to the tail region of the ER isoform of rat cytochrome b(5) (abbreviated here as b(5)) via a linker sequence. The tail region contains the entire sequence (Pro94-Asp134) that remains membrane associated after the trypsin cleavage of native b(5), including the 17-residue TMD (Transmembrane domain), flanked by upstream and downstream polar sequence…

Representative Results

Figure 2 shows an example FRAP study of protein mobility. The mobility of dEGFP-ER protein is demonstrated by the rapid fluorescence recovery after photobleaching in bleached OSERs. For the quantitative analysis, the half time and mobile fraction were derived from experimentally measured data by fitting the following monoexponential equation: F(t) = Fpost + (Frec-Fpost)(1-e-t/τ) wher…

Discussion

The protocols and imaging approaches described in this paper have been used to investigate the distribution and mobility of transfected TA fluorescent proteins resident in the ER of living cells. We have also analyzed the effect of the over-expression of these proteins on the architecture of this subcellular compartment by means of ultrastructural analyses.

The combination of live-cell confocal imaging and electron microscopy represents is a very powerful means of investigating the dynamic pro…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors are grateful to Fondazione Filarete for its help and support in the publication of this article. We would also like to thank Centro Europeo di Nanomedicina for the use of the TECNAI G2 transmission electron microscope.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Dulbecco’s Modified Eagle medium (DMEM) Invitrogen 41966029
Dulbecco’s Modified Eagle medium (DMEM) w/o phenol red Invitrogen 31053028
Fetal Bovine Serum (FBS) Invitrogen 10270106
Pen/Strep Invitrogen 15140-122
L-Glutamine 200 mM solution Invitrogen 25030-024
jetPEI Polyplus Transfection PP10110
OxyFluor Oxyrase Inc. OF-0005
Glutaraldehyde Grade I Sigma Aldrich G5882
Sodium Cacodylate Trihydrate Sigma Aldrich C0250
Osmium Tetroxide 4% solution Electron Microscopy Science 19150
Uranyl Acetate dihydrate Sigma Aldrich 73943 slightly radioactive
Propylene Oxide Sigma-Aldrich 82320
EPON embedding medium kit Sigma-Aldrich 45359-1EA-F
Lead Citrate Electron Microscopy Science 17800
Bench top centrifuge Eppendorf 5415 D
Spectral Confocal Microscope Leica Microsystems TCS SP5
CO2 Microscope Cage Incubation System OkoLab
Ultramicrotome Leica Microsystems UC6
Diamond knife Diatome Ultra 45 °
Transmission Electron Microscope FEI Tecnai G2
GraphPad Prism Software GraphPad Software, Inc
steel culture cell chamber for 24 mm coverslip Bioscience Tools CSC-25
Electron Microscopy grids Electron Microscopy Science G300Cu

References

  1. Fasana, E., et al. A VAPB mutant linked to amyotrophic lateral sclerosis generates a novel form of organized smooth endoplasmic reticulum. FASEB J. 24, 1419-1430 (2010).
  2. Borgese, N., Francolini, M., Snapp, E. Endoplasmic reticulum architecture: structures in flux. Curr. Opin. Cell Biol. 18, 358-364 (2006).
  3. Ronchi, P., Colombo, S., Francolini, M., Borgese, N. Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J. Cell Biol. 181, 105-118 (2008).
  4. Lippincott-Schwartz, J., Snapp, E., Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444-456 (2001).
  5. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L., Schekman, R. Bi-directional protein transport between the ER and. 20, 87-123 (2004).
  6. Snapp, E. L., et al. Formation of stacked ER cisternae by low affinity protein interactions. J. Cell Biol. 163, 257-269 (2003).
  7. Papiani, G., et al. Restructured endoplasmic reticulum generated by mutant amyotrophic lateral sclerosis-linked VAPB is cleared by the proteasome. J. Cell Sci. 125, 3601-3611 (2012).
  8. Almsherqi, Z. A., Kohlwein, S. D., Deng, Y. Cubic membranes: a legend beyond the Flatland* of cell membrane organization. J. Cell Biol. 173, 839-844 (2006).
  9. Federovitch, C. M., Ron, D., Hampton, R. Y. The dynamic ER: experimental approaches and current questions. Curr. Opin. Cell Biol. 17, 409-414 (2005).
  10. Takei, K., Mignery, G. A., Mugnaini, E., Sudhof, T. C., De Camilli, P. Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron. 12, 327-342 (1994).
  11. Feldman, D., Swarm, R. L., Becker, J. Ultrastructural study of rat liver and liver neoplasms after long-term treatment with phenobarbital. Cancer Res. 41, 2151-2162 (1981).
  12. Sprocati, T., Ronchi, P., Raimondi, A., Francolini, M., Borgese, N. Dynamic and reversible restructuring of the endoplasmic reticulum induced by PDMP in cultured cells. J. Cell Sci. 119, 3249-3260 (2006).
  13. Costantini, L. M., Fossati, M., Francolini, M., Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic. 13, 643-649 (2012).
  14. Pyszniak, A. M., Welder, C. A., Takei, F. Cell surface distribution of high-avidity LFA-1 detected by soluble ICAM-1-coated microspheres. J. Immunol. 152, 5241-5249 (1994).
  15. Taylor, J. P., Hardy, J., Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science. 296, 1991-1995 (2002).
  16. Winklhofer, K. F., Tatzelt, J., Haass, C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336-349 (2008).
  17. Borgese, N., Gazzoni, I., Barberi, M., Colombo, S., Pedrazzini, E. Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol. Biol. Cell. 12, 2482-2496 (2001).
  18. Chudakov, D. M., Matz, M. V., Lukyanov, S., Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 90, 1103-1163 (2010).
  19. Bancaud, A., Huet, S., Rabut, G., Ellenberg, J. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb. Protoc. 2010, (2010).
  20. Michida, T., et al. Role of endothelin 1 in hemorrhagic shock-induced gastric mucosal injury in rats. Gastroenterology. 106, 988-993 (1994).
check_url/cn/50985?article_type=t

Play Video

Cite This Article
Fossati, M., Borgese, N., Colombo, S. F., Francolini, M. Visualization of Endoplasmic Reticulum Subdomains in Cultured Cells. J. Vis. Exp. (84), e50985, doi:10.3791/50985 (2014).

View Video