Summary

Konfokal mikroskopi kullanılarak Yaşayan hücreler içinde endositik ve Sitosolik Bölümleri eşzamanlı pH Ölçümü

Published: April 28, 2014
doi:

Summary

Several methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of cytoplasmic and organellar pH. Here, we describe in detail a rapid and accurate methodology to simultaneously measure cytoplasmic and vesicular pH by ratiometric imaging of living cells.

Abstract

Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported1. Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases2. Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells3. This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis3,4. Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can be used to address fundamental questions related to pH modulation during cell responses to external challenges.

Protocol

Hücresel pH Kalibrasyon Çözümleri 1. Hazırlanması Kalibrasyon için kullanılmak üzere 5 çözümler hazırlamak için beş ayrı 50 ml konik tüplere aşağıdaki bileşikler ekleyin: NaCl (1 M NaCl 1 mi) (1 M NaCl, 10 ml H = 2 0 içinde 0.58 g) KCl (6.75 1 M KCI mi) (1 M KCl, 10 ml H 2 0 içinde 0.75 g =) Glikoz (1 M D-Glikoz 1 mi) (1 M D-Glucose = H 10 ml 1.80 g 2 0) MgS0 4 (0.05 1 M MgSO 4</sub…

Representative Results

Hücre içi ve endozomal / lızozomal hücre bölmelerine hem de pH değerinin ölçümü için aynı anda, rasyometrik floresan pH algılama Snarf-1 problar ve HPTS kullanılmıştır. HPTS endozomal / lizozom oran ölçer pH'ı ölçümünü sağlar, oysa SNARF-1 sitosolik bölmesi ile sınırlandırılmıştır. 16 saat HPTS ile hücre yükleme endozomlar / lizozomlarında 4 seçici yerelleştirme sağlar. PH algılama probları ile yüklü HT-1080 hücreleri kaydedilen floresans tipik bir örneği, <s…

Discussion

Farklı hücre bölümlerinde canlı hücre görüntüleme Sayısal pH ölçümü doğru dış zorluklara hücre yanıtlarında pH değişimleri ölçmek için gereklidir. Bununla birlikte, hala önemli engellerden biri kolayca ve özel hücre bölmeleri hedef etmektir. Bu bağlamda, bir kaç çalışmada, elektroporasyon ya da mikroenjeksiyon ile 8-10 hücrelere katılan bir hücre içi pH göstergesi olarak HPTS kullanımını sermiştir. Bu teknikler yani elektro hücrelere geniş zararlara yol açar, ve m…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Gilles Dupuis for critical reading of the manuscript.

Funding

This work was supported by the Canadian Institutes for Health Research, grant # MOP-126173. C.M.D is a member of the Fonds de la Recherche en Santé (FRSQ)-funded Centre de Recherche Clinique Étienne LeBel.

Materials

Solutions for calibration
Sodium chloride Fischer L-11621
Potassium chloride Fischer M-12445
D-Glucose (dextrose) Fischer D16-1
Magnesium sulfate Fischer M65-500
HEPES Sigma-Aldrich H3375
Calcium chloride dihydrate Fischer M-1612
Deionized water N/A N/A
Nigericin Calbiochem 481990 Toxic by inhalation or in contact with skin
Keep protected from the light at 4°C
Culture dishes ∅ 35mm BD Biosciences 354456
pH-sensing probes
8-Hydroxypyrene-1,3,6-trisulfonic acid (HPTS) Life technologies H-348 Keep away from the light at room temperature
5-(and-6)-Carboxy SNARF®-1, Acetoxymethyl Ester, Acetate Life technologies C-1271 Keep away from the light and humidity at -20°C
Dimethyl Sufoxide (DMSO) Fischer BP231-1  Harmful
Phosphate buffered saline (PBS) 100X
Potassium chloride Fischer M-12445 20 g
Sodium phosphate monobasic Fischer S369-1 115 g
Potassium phosphate monobasic J.T Baker 3246-01 20 g
Deionized water N/A N/A Bring to 1 L
Autoclave and adjust pH to 7.4
Phosphate buffered saline (PBS) 1X
PBS 100X N/A N/A 50 mL
Sodium chloride Fischer L-11621 40,5 g
Deoinized water N/A N/A Bring to 5 L
pH modulators
 Bafilomycin A1 Sigma-Aldrich B-1793
5-(N-Ethyl-N-isopropyl)amiloride (EIPA) Sigma-Aldrich A3085
Ammonium chloride Fischer A649-500

References

  1. Demaurex, N. pH Homeostasis of cellular organelles. News Physiol Sci. 17, 1-5 (2002).
  2. Webb, B. A., Chimenti, M., Jacobson, M. P., Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 11, 671-677 (2011).
  3. Hinton, A., et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem. 284, 16400-16408 (2009).
  4. Overly, C. C., Lee, K. D., Berthiaume, E., Hollenbeck, P. J. Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci U S A. 92, 3156-3160 (1995).
  5. Drose, S., Altendorf, K. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol. 200, 1-8 (1997).
  6. Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., Cala, P. M. NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity. J Biol Chem. 282, 19716-19727 (2007).
  7. Alfonso, A., Cabado, A. G., Vieytes, M. R., Botana, L. M. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation. Br J Pharmacol. 130, 1809-1816 (2000).
  8. Han, J., Burgess, K. Fluorescent indicators for intracellular pH. Chem Rev. 110, 2709-2728 (2010).
  9. Giuliano, K. A., Gillies, R. J. Determination of intracellular pH of BALB/c-3T3 cells using the fluorescence of pyranine. Anal Biochem. 167, 362-371 (1987).
  10. Willoughby, D., Thomas, R., Schwiening, C. The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurones. J Physiol. 530, 405-416 (2001).
check_url/cn/51395?article_type=t

Play Video

Cite This Article
Lucien, F., Harper, K., Pelletier, P., Volkov, L., Dubois, C. M. Simultaneous pH Measurement in Endocytic and Cytosolic Compartments in Living Cells using Confocal Microscopy. J. Vis. Exp. (86), e51395, doi:10.3791/51395 (2014).

View Video