Summary

合并多个数据采集系统来研究皮质输出和多段生物力学

Published: January 09, 2016
doi:

Summary

The use of transcranial magnetic stimulation (TMS) to study human motor control requires the integration of data acquisition systems to control TMS delivery and simultaneously record human behavior. The present manuscript provides a detailed methodology for integrating data acquisition systems for the purpose of investigating human movement via TMS.

Abstract

Transcranial magnetic stimulation techniques allow for an in-depth investigation into the neural mechanisms that underpin human behavior. To date, the use of TMS to study human movement, has been limited by the challenges related to precisely timing the delivery of TMS to features of the unfolding movement and, also, by accurately characterizing kinematics and kinetics. To overcome these technical challenges, TMS delivery and acquisition systems should be integrated with an online motion tracking system. The present manuscript details technical innovations that integrate multiple acquisition systems to facilitate and advance the use of TMS to study human movement. Using commercially available software and hardware systems, a step-by-step approach to both the hardware assembly and the software scripts necessary to perform TMS studies triggered by specific features of a movement is provided. The approach is focused on the study of upper limb, planar, multi-joint reaching movements. However, the same integrative system is amenable to a multitude of sophisticated studies of human motor control.

Introduction

经颅磁刺激(TMS)是一种非侵入性的方法来刺激人大脑皮层。3,5-但是也有一些用于理解皮质功能诸如单和多脉冲,双中心刺激来探测功能连接几个TMS协议,以及重复脉冲,促进神经可塑性。4,6-8 TMS协议也可以组合以促进人类皮质过程的本理解和指导神经恢复战略。除了刺激皮质,TMS也可使用由皮质脊髓束或小脑刺激理解子皮质功能。

其中一个目前面临TMS研究的最大的技术挑战是人类目标导向的自主运动过程中,研究皮质区的作用的能力。有几个因素促成这一技术难题。首先,TMS交付应具有实时人体运动C组apture。以这种方式,TMS脉冲可以一个动作顺序提供时间锁定方法来研究复杂的运动内被递送或触发特征。第二,整合TMS递送和运动捕捉允许复杂的运动的详细描述,因为它展现,这将促进该支撑电机控制脑行为的关系的理解。目前,还没有商用系统(含)整合TMS和动作捕捉方法。对于在电机控制领域的神经科学家,这个空间通常意味着费时,技术挑战,整合多个软件和硬件的数据采集和传输系统。这种技术上的限制也导致了稀疏的研究致力于累及上肢动态多关节运动的研究。对于TMS促进人类电机控制领域,当务之急是皮质功能在复杂的人体运动进行探测。

<p class ="“jove_content”">要有效地整合TMS和动作捕捉方法,采集系统必须允许实时同步TMS和动作捕捉。第二,该系统必须适合于学习的运动运动学即,运动的描述),运动动力学即,迫使该移动引起),和肌肉的活动。第三,系统必须能够同步的TMS脉冲以这些运动特征,并且基于复杂的运动特征由标准来触发。这样的系统将提供皮质功能和运动学和运动的动力学之间的重要关联。

这份手稿详细介绍了独特的方法来整合TMS和动作捕捉的方法。这种方法允许复杂的多关节运动的力学详细的分析,并允许自动由移动即,运动学,动力学,或肌肉活动)的特定功能的TMS触发脉冲的控制。此外,此数据ACQuisition系统允许TMS和动作捕捉与需要视觉 – 运动或感觉任务实验范式整合。这份手稿详细介绍了创新的方法,用于组合TMS和人体运动采集和分析的目的,集成常用的动作捕捉硬件和软件系统。数据使用期间,平面多关节运动的人类大脑皮层功能的样本研究中提出。可供下载来进行实验所需的软件脚本。

Protocol

注意:下面的协议可以被应用到各种实验。下面是关于涉及一个视觉引导臂到达任务到六个一计算机显示器上显示的空间的目标之一的实验细节。 TMS,探测皮质兴奋性,是通过摆脱运动是模拟信号所触发(也就是说,肌电图或electrogoniometer输入),或从扫描的数据采集软件产生的数字信号。这项研究是根据赫尔辛基宣言批准麦克马斯特研究伦理委员会。提供的样本数据集。 <p class="jove_ti…

Representative Results

图3显示从一个单一的试验结果。在这项试验中, 图3A示出的参加者的初始位置和,听觉“走”的提示后,参加者快速,准确地移动尽可能到目标(即,最后的位置)。扫描为基础的数据采集软件触发根据肌电图发病的肱二头肌TMS脉冲。这允许皮质输出定向到上臂的肌肉的测量在一个特定的时间期间任务的性能进行评估。 图3B?…

Discussion

The present manuscript details an innovative method to integrate TMS and motion capture systems in the context of a visuo-motor task. To make rapid and meaningful advances in the study of human motor control, it is essential that methodologies allow for precise communication across multiple hardware and software systems. The paradigm presented could be used to study a variety of research interests including the cortical contribution to motor learning, the neurophysiology of motor control, and multi-joint movement contr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank funding from the Natural Sciences and Engineering Research Council to AJN.

Materials

Polhemus FASTRAK Polhemus Inc. 6 degrees of freedom electromagnetic motion tracking device with 4 sensors
Presentation Neurobehavioural Systems Inc. A fully programmable software for experiments involving data acquisition and stimulus delivery
Cutom built Exoskeleton 80/20 Inc. – The industrial erector set Varies Various parts used to build the exoskeleton
Brainsight Rogue Research Inc. Neuronavigation software to track coil position throughout the experiment

References

  1. Chen, R., Yung, D., Li, J. Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 89 (3), 1256-1264 (2003).
  2. Criswell, E. . Cram’s Introduction to Surface Electromyorgaphy. , (2011).
  3. Di Lazzaro, V., et al. The physiological basis of transcranial motor cortex stimulation in conscious humans. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Clin. Neurophysiol. 115 (2), 255-266 (2004).
  4. Ferbert, A., et al. Interhemispheric inhibition of the human motor cortex. J Physiol. 453, 525-546 (1992).
  5. Hallett, M. Transcranial magnetic stimulation: a primer. Neuron. 55 (2), 187-199 (2007).
  6. Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron. 45 (2), 201-206 (2005).
  7. Jacobs, M., Premji, A., Nelson, A. J. Plasticity-inducing TMS protocols to investigate somatosensory control of hand function. Neural Plast. , 350574 (2012).
  8. Kujirai, T., et al. Corticocortical inhibition in human motor cortex. 471, 501-519 (1993).
  9. Miller, D., Nelson, R. . Biomechanics of Sport: A Research Approach. , (1973).
  10. Nussbaum, M. A., Zhang, X. Heuristics for locating upper extremity joint centres from a reduced set of surface markers. Human Movement Sciences. 19, 797-816 (2000).
  11. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91 (2), 79-92 (1994).
  12. Winter, D. A. . Biomechanics and Motor Control of Human Movement. , (2009).
  13. Zatsiorsky, V. . Kinetics of Human Motion. , (2002).
check_url/cn/53492?article_type=t

Play Video

Cite This Article
Asmussen, M. J., Bailey, A. Z., Keir, P. J., Potvin, J., Bergel, T., Nelson, A. J. Combining Multiple Data Acquisition Systems to Study Corticospinal Output and Multi-segment Biomechanics. J. Vis. Exp. (107), e53492, doi:10.3791/53492 (2016).

View Video