Summary

A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

Published: February 13, 2017
doi:

Summary

We present the protocols for electrochemically evaluating a symmetric non-aqueous organic redox flow battery and for diagnosing its state of charge using FTIR.

Abstract

Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

Introduction

Redox flow batteries store energy in liquid electrolytes that are contained in external reservoirs and are pumped to internal electrodes to complete electrochemical reactions. The stored energy and power can thus be decoupled leading to excellent design flexibility, scalability, and modularity. These advantages make flow batteries well-suited for stationary energy storage applications for integrating clean yet intermittent renewable energies, increasing grid asset utilization and efficiency, and improving energy resiliency and security.1,2,3 Traditional aqueous flow batteries suffer from limited energy density, mostly due to the narrow voltage window to avoid water electrolysis.4,5,6,7,8 In contrast, non-aqueous electrolytes based flow batteries are being widely pursued because of the potential for achieving high cell voltage and high energy density.9,10 In these efforts, a variety of flow battery chemistries have been investigated, including metal-coordination complexes,11,12 all-organic,13,14 redox active polymers,15 and lithium hybrid flow systems.16,17,18,19

However, the potential of non-aqueous flow batteries has yet to be fully demonstrated due to the major technical bottleneck of limited demonstration under flow battery-relevant conditions. This bottleneck is closely associated with a number of performance-limiting factors. First, the small solubility of most electroactive materials leads to low energy density delivery by non-aqueous flow cells. Second, the rate capability of non-aqueous flow batteries is largely limited by the high electrolyte viscosity and resistivity at relevant redox concentrations. The third factor is the lack of high-performance membranes. Nafion and ceramic membranes show low ionic conductivity with non-aqueous electrolytes. Porous separators have demonstrated decent flow cell performance, but suffer considerable self-discharge because of relatively large pore size.14,20 Typically, mixed-reactant electrolytes containing both anolyte and catholyte redox materials (1:1 ratio) are used to reduce redox materials crossover, which however sacrifices the effective redox concentrations, typically by half.14,21 Overcoming the aforementioned bottleneck requires improvements in materials discovery, battery chemistry design, and flow cell architecture to achieve battery-relevant cycling.

Battery status monitoring is essentially important for reliable operations. Off-normal conditions including overcharge, gas evolution, and material degradation can cause damages to battery performance and even battery failure. Especially for large-scale flow batteries involving large amounts of battery materials, these factors can cause serious safety issues and investment loss. State of charge (SOC) describing the depth of charge or discharge of flow batteries is one of the most important battery status parameters. Timely SOC monitoring can detect potential risks before they reach threatening levels. However, this area seems to be under-addressed so far, especially in non-aqueous flow batteries. Spectrophotoscopic methods such as ultraviolet-visible (UV-vis) spectroscopy and electrolyte conductivity measurements have been evaluated in aqueous flow battery for SOC determination.22,23,24

We have recently introduced a novel symmetric non-aqueous flow battery design based on a new ambipolar redox material, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO).25 This flow battery holds the promise to address the aforementioned challenges of non-aqueous flow batteries. First, PTIO has a high solubility (2.6 M) in the battery solvent of acetonitrile (MeCN) that is promising to enable a high energy density. Second, PTIO exhibits two reversible redox pairs that are moderately separated and thus can form a symmetric battery chemistry by itself. We have also demonstrated that a distinguishable PTIO peak in the FTIR spectra can be correlated with the concentration of unreacted PTIO in the flow cell, which leads to spectroscopic determination of the SOC, as cross-validated by ESR results.26 Here we present a protocol to elaborate procedures for electrochemical evaluations and FTIR-based SOC diagnostics of the PTIO symmetric flow battery. This work is expected to trigger more insights in maintaining the safety and reliability during long-term flow battery operations, especially in real-world grid applications.

Protocol

Note: All the solution preparations, cyclic voltammetry (CV) tests, and flow cell assembly and tests were carried out in an argon-filled glove box with water and O2 levels less than 1 ppm. 1. Electrochemical Evaluations of PTIO Flow Cells CV Test Polish a glassy carbon electrode with 0.05 µm gamma alumina powder, flush it with deionized water, put it in under vacuum at room temperature for overnight, and transfer it into a glove box.</li…

Representative Results

The unique advantages of the symmetric PTIO flow battery system are highly ascribed to the electrochemical properties of PTIO, an organic nitroxide radical compound. PTIO can undergo electrochemical disproportionation reactions to form PTIO+ and PTIO− (Figure 2a). These two redox pairs are moderately separated by a voltage gap of ~1.7 V (Figure 2b) and can be used as both anolyte and catholyte redox materials in a symmetric bat…

Discussion

As we demonstrated before,25 FTIR is capable of non-invasively detecting the SOC of the PTIO flow battery. As a diagnostic tool, FTIR is particularly advantageous because of its easy accessibility, fast response, low cost, small space requirement, facility for online incorporation, no detector saturation, and the ability to correlate structural information to investigate molecular evolutions during flow battery operation. Figure 3e illustrates a proposed flow battery device integr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was financially supported by Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The authors also acknowledge Journal of Materials Chemistry A (a Royal Society of Chemistry journal) for originally publishing this research (http://pubs.rsc.org/en/content/articlehtml/2016/ta/c6ta01177b). PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830.

Materials

PTIO TCI America A5440 >98.0%
Tetrabutylammonium hexafluorophosphate Sigma-Aldrich 86879 electrochemical grade, ≥99.0%
MeCN BASF 50325685 Battery grade
Silver nitrate Sigma-Aldrich 204390 99.9999% trace metals basis
Gamma alumina powder CH Instruments CHI120
Graphite felt SGL GFD3 Vacuum-dry at 70°C for 24 h
Porous separator Daramic AA800 Vacuum-dry at 70°C for 24 h
Battery Tester Wuhan LAND electronics Co., Ltd. Lanhe 1A current range
Electrochemical Workstation Solartron Analytical ModuLab
glove box MBRAUN Labmaster SP oxygen and water levels <1 ppm
ESR spectrometer Bruker  Elexsys 580  Equipped with an SHQE resonator with microwave frequency ~9.85 GHz (X band) at 2 mW power, with 100 kHz field modulation

References

  1. Dunn, B., Kamath, H., Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 334 (6058), 928-935 (2011).
  2. Yang, Z. G., et al. Electrochemical Energy Storage for Green Grid. Chem. Rev. 111 (5), 3577-3613 (2011).
  3. Wang, W., Luo, Q., Li, B., Wei, X., Li, L., Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Adv. Funct. Mater. 23 (8), 970-986 (2013).
  4. Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 158 (5), 55-79 (2011).
  5. Weber, A. Z., et al. Redox Flow Batteries: A Review. J. Appl. Electrochem. 41 (10), 1137-1164 (2011).
  6. Noack, J., Roznyatovskaya, N., Herr, T., Fischer, P. The Chemistry of Redox-Flow Batteries. Angew. Chem. Int. Ed. 54 (34), 9775-9808 (2015).
  7. Soloveichik, G. L. Flow Batteries: Current Status and Trends. Chem. Rev. 115 (20), 11533-11558 (2015).
  8. Leung, P., Li, X., de Leon, C. P., Berlouis, L., Low, C. T. J., Walsh, F. C. Progress in Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage. RSC Adv. 2 (27), 10125-10156 (2012).
  9. Gong, K., Fang, Q., Gu, S., Li, S., Yan, Y. Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs. Energy Environ. Sci. 8 (12), 3515-3530 (2015).
  10. Shin, S. H., Yun, S. H., Moon, S. H. A Review of Current Developments in Non-aqueous Redox Flow Batteries: Characterization of Their Membranes for Design Perspective. RSC Adv. 3 (24), 9095-9116 (2013).
  11. Cappillino, P. J., et al. Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes. Adv. Energy Mater. 4 (1), 1300566 (2014).
  12. Suttil, J. A., et al. Metal Acetylacetonate Complexes for High Energy Density Non-aqueous Redox Flow Batteries. J. Mater. Chem. A. 3 (15), 7929-7938 (2015).
  13. Brushett, F. R., Vaughey, J. T., Jansen, A. N. An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery. Adv. Energy Mater. 2 (11), 1390-1396 (2012).
  14. Wei, X., et al. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Angew. Chem. Int. Ed. 54 (30), 8684-8687 (2015).
  15. Nagarjuna, G., et al. Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents. J. Am. Chem. Soc. 136 (46), 16309-16316 (2014).
  16. Wei, X., et al. TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries. Adv. Mater. 26 (45), 7649-7653 (2014).
  17. Wei, X., et al. Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species. Adv. Energy Mater. 5 (1), 1400678 (2015).
  18. Fan, F. Y., et al. Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks. Nano Lett. 14 (4), 2210-2218 (2014).
  19. Pan, H., et al. On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li-S Redox Flow Batteries. Adv. Energy Mater. 5 (16), 1500113 (2015).
  20. Escalante-Garcia, I. L., Wainright, J. S., Thompson, L. T., Savinell, R. F. Performance of a Non-Aqueous Vanadium Acetylacetonate Prototype Redox Flow Battery: Examination of Separators and Capacity Decay. J. Electrochem. Soc. 162 (3), 363-372 (2015).
  21. Wei, X., et al. Microporous Separators for Fe/V Redox Flow Batteries. J. Power Sources. 218, 39-45 (2012).
  22. Skyllas-Kazacos, M., Kazacos, M. State of Charge Monitoring Methods for Vanadium Redox Flow Battery Control. J. Power Sources. 196 (20), 8822-8827 (2011).
  23. Brooker, R. P., Bell, C. J., Bonville, L. J., Kunz, H. R., Fenton, J. M. Determining Vanadium Concentrations Using the UV-Vis Response Method. J. Electrochem. Soc. 162 (4), 608-613 (2015).
  24. Petchsingh, C., et al. Spectroscopic Measurement of State of Charge in Vanadium Flow Batteries with an Analytical Model of VIV-VV Absorbance. J. Electrochem. Soc. 163 (1), 5068-5083 (2016).
  25. Duan, W., et al. A Symmetric Organic-Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR. J. Mater. Chem. A. 4 (15), 5448-5456 (2016).
  26. Potash, R. A., McKone, J. R., Conte, S., Abruña, H. D. On the Benefits of a Symmetric Redox Flow Battery. J. Electrochem. Soc. 163 (3), 338-344 (2016).
  27. Kim, H. S., et al. A Tetradentate Ni(II) Complex Cation as a Single Redox Couple for Non-aqueous Flow Batteries. J. Power Sources. 283, 300-304 (2015).
  28. Shinkle, A. A., Sleightholme, A. E. S., Griffith, L. D., Thompson, L. T., Monroe, C. W. Degradation Mechanisms in The Non-aqueous Vanadium Acetylacetonate Redox Flow Battery. J. Power Sources. 206, 490-496 (2012).
  29. Li, Z., et al. Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochem. Solid-State Lett. 14 (12), 171-173 (2011).
  30. Schaltin, S., et al. Towards an All-Copper Redox Flow Battery Based on a Copper-Containing Ionic Liquid. Chem. Commun. 52, 414-417 (2016).
  31. Luo, Q., et al. Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries. ChemSusChem. 6 (2), 268-274 (2013).
check_url/cn/55171?article_type=t

Play Video

Cite This Article
Duan, W., Vemuri, R. S., Hu, D., Yang, Z., Wei, X. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery. J. Vis. Exp. (120), e55171, doi:10.3791/55171 (2017).

View Video