Summary

3D磁干细胞聚集和生物反应器为成熟软骨再生

Published: April 27, 2017
doi:

Summary

从干细胞软骨需要微调的培养条件。在这里,我们提出了冷凝细胞磁性的方法,一个必不可少的步骤启动软骨。此外,我们显示,在生物反应器中动态成熟施加机械刺激,以在蜂窝结构和增强软骨细胞外基质的产生。

Abstract

软骨工程仍因创建类似于天然组织的体外功能植入物的困难挑战。最近探讨自体替代发展的方法涉及干细胞分化为软骨细胞。要启动这个软骨,一定程度的干细胞需要的压实;因此,我们证实磁冷凝细胞的可行性,既厚支架和自由脚手架内,使用小型化的磁场源如细胞吸引子。这种磁性方法也被用来引导聚集融合,打造脚手架免费的,有组织的,三维(3D)的大小组织中几毫米。除了具有增强的大小,通过磁性驱动的融合形成的组织示于胶原II的表达的增加显著,观察聚集蛋白聚糖表达有类似的趋势。作为天然软骨进行力吨帽子影响了它的三维结构,还进行动态成熟。提供机械刺激的生物反应器被用来培养磁接种的支架在21天的期间。生物反应器的成熟大大改善软骨进入细胞化的支架;这些条件下得到的细胞外基质是富含胶原蛋白II和聚集蛋白聚糖。这项工作概述在生物反应器用于改善软骨细胞分化,这两种支架和无内多糖支架标记的干细胞的磁性缩合和动态成熟的创新潜力。

Introduction

磁性纳米粒子在临床上用于磁共振成像(MRI)造影剂已经使用,其治疗应用不断扩大。例如,最近已经显示,标记的细胞可在体内使用的外部磁场在限定的注入1,2,3的部位和操作可被引导和/或保持。在再生医学中,它们可以被用于工程体外 4有组织的组织,包括血管组织5,6,7,8的骨和软骨9。

关节软骨浸渍在无血管的环境中,会发生损坏时使细胞外基质组分的维修非常有限。出于这个原因,researc目前h的重点,可以在缺损部位植入透明软骨替换的工程。为了生产自体替换,一些研究小组正在探索使用自体软骨细胞作为细胞源10,11的,而另一些强调间充质干细胞(MSC)分化成软骨细胞12,13的能力。在这里重现以前的研究中,我们选择MSC,因为他们的骨髓采样是相当简单,并不需要健康的软骨细胞,它可能失去其表型14的牺牲。

早期的步骤启动干细胞的软骨细胞分化的实质是他们的凝结。细胞聚集体使用的是离心或微团培养15共同形成;然而,这些冷凝方法neitheR有创建厚支架也不以控制聚集体的融合潜能内细胞团的潜力。在本文中,我们描述了一个创新的方法,利用冷凝MSC磁性标记和磁引力干细胞。该技术已被证明是形成通过聚集体的融合彼此自由支架-3D构建体,以获得毫米级软骨组织9。厚和大的脚手架磁种也让增加工程化组织的大小,用于植入更容易设计的形状是有用的,多样化用于软骨修复的临床应用的潜力的可能性。在这里,我们详细地对MSC的磁播种到天然多糖,支链淀粉,和葡聚糖组成的多孔支架的协议,先前使用的支架,以限制干细胞16,17。软骨分化finallÝ在生物反应器进行,以确保连续的营养物和气体扩散与细胞的高密度接种的支架的基质芯。除了提供营养物,软骨的生长因子,以及气体到细胞中,所述生物反应器提供机械刺激。总体而言,用于限制干细胞的磁性的技术,以在生物反应器的动态熟化组合,可以显着地改善软骨形成分化。

Protocol

1.磁性设备的建设注意:用于细胞接种的装置取决于应用( 图1)。形成聚集体,细胞的数量被限制在2.5×10 5 /聚集体,所以磁性尖端必须非常薄(750微米直径)。种子的1.8厘米七分之二毫米厚的支架,磁体必须更大(直径3mm),并确保通过支架的孔中的细胞迁移。 与微磁体为聚集体形成的装置的结构( 图1A) 使通过铝?…

Representative Results

首先,聚集体可以单独使用微磁体通过沉积2.5×10 5个标记的干细胞( 图2A)形成的。这些单个聚集体(〜大小0.8毫米)然后可融合成由于连续的,磁感应融合较大的结构。例如,在成熟软骨的第8天,聚集体放置在对以形成双联体接触;四胞胎通过合并2个双重峰组装在第11天;最后,在第15天,将4四胞胎融合以形成包含最初形成的聚集体16的3D构建体,总4?…

Discussion

首先,因为这里提出的技术依靠磁性纳米粒子的内化,一个重要的问题是纳米粒子的结果,一旦他们定位在细胞内。这是事实,铁纳米颗粒可以触发潜在毒性或取决于它们的大小,涂层,和曝光19,22的时间受损分化能力。然而,一些研究已经显示在细胞生理学没有影响当包封的铁纳米颗粒在magnetoferritin的形式,生物磁性纳米粒子24使?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢QuinXell技术和CellD,特别是洛塔尔·格兰尼曼和多米尼克·霍兹伦他们用生物反应器的帮助。我们感谢凯瑟琳原我,谁用普鲁兰多糖/葡聚糖多糖支架为我们提供。这项工作是由欧盟(ERC-2014-COG项目马蒂斯648779)和由AgenceNationalede LA RECHERCHE(ANR),法国(MagStem项目ANR-11 SVSE5)的支持。

Materials

Iron  oxide (maghemite) nanoparticules ( γ-Fe2O3) PHENIX – University Paris 6 Made and given by C. Ménager Mean diameter of 8.1 nm and negative surface charge
Polysaccharide Pullulan/Dextran scaffolds LIOAD – University Nantes Made and given by C. Le Visage Prepared from a 75:25 mixture of pullulan/dextran in alkaline conditions (10M NaOH). Porosity: 185-205µm; Thickness: 7mm; Surface area: 1.8cm2.
TisXell Regeneration System QuinXell Technologies QX900-002 Biaxial bioreactor with 500 mL culture chamber 
Cage for scaffolds: Histosette II M492  VWR 720-0909
Mesenchymal Stem Cell (MSC) Lonza PT-2501 Three independant batches have been used
MSCGM BulletKit medium Lonza PT-3001 For the complete medium, add the provided BulletKit (containing serum, glutamine and antibiotics) to the MSCGM medium
DMEM with Glutamax I Life Technologies 31966-021 No sodium pyruvate, no HEPES
RPMI medium 1640, no Glutamine Life Technologies 31870-025 No sodium pyruvate, no HEPES
PBS w/o CaCl2 w/o MgCl2 Life Technologies 14190-094
0.05% Trypsin-EDTA (1x) Life Technologies 25300-054
Penicillin (10.000U/mL)/Streptomicin (10.000µg/mL) Life Technologies 15140-122
ITS Premix Universal Culture Supplement (20x) Corning 354352
Sodium pyruvate solution 100mM Sigma S8636
L-Ascorbic Acid 2-phosphate Sigma A8960 Prepare the concentrated solution (25 mM) in distilled water extemporaneously
L-Proline Sigma P5607 Prepare the 175 mM stock solution diluted in distilled water and store at 4°C
Dexamethasone Sigma D4902 Prepare the 1 mM stock solution diluted in Ethanol 100% and store at -20°C
TGF-beta 3 protein 10µg Interchim 30R-AT028
Tri-sodium citrate VWR 33615.268 Prepare the 1M stock solution diluted in distilled water and store at 4°C
Pullulanase from Bacillus acidopullulyticus Sigma P2986
Dextranase from Chaetomium erraticum Sigma D0443
NucleoSpin RNA Extraction Kit Macherey-Nagel 740955.5
SuperScript II Reverse Transcriptase Life Technologies 18064-014
Random Primer – Hexamer  Promega C1181 500 µg/mL: Use diluted 1/2 and put 1 µL per sample
Recombinant RNAsin ribonuclease inhibitor Promega N2511 40 U/µL: put 1 µL per sample
PCR nucleotide dNTP mix (10mM each) Roche 10842321
SyBr Green PCR Master Mix Life Technologies 4368708
Step One Plus Real-Time PCR System Life Technologies 4381792
Formalin solution 10% neutral buffered Sigma HT5012
OCT solution VWR 361603E
Isopentane Sigma M32631
Toluidine blue O VWR 1.15930.0025
Ethanol absolute VWR 20821.310
Toluene VWR 1.08323.1000
Mounting medium Pertex Histolab 840
RPLP0 Primer for qPCR Eurogentec 5'-TGCATCAGTAC
CCCATTCTATCAT-3' ;
5'-AAGGTGTAATC
CGTCTCCACAGA-3'
Aggrecan Primer for qPCR Eurogentec 5'-TCTACCGCTGCGAGGTGAT-3' ; 3'-TGTAATGGAACACGATGCCTTT-5'
Collagen II Primer for qPCR Eurogentec 5'-ACTGGATTGACCCCAACCAA-3' ; 3'-TCCATGTTGCAGAAAACCTTCA-5'

References

  1. Naumova, A. V., Modo, M., Moore, A., Murry, C. E., Frank, J. A. Clinical imaging in regenerative medicine. Nat Biotechnol. 32 (8), 804-818 (2014).
  2. Edmundson, M., Thanh, N. T., Song, B. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics. 3 (8), 573-582 (2013).
  3. Di Corato, R., et al. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS Nano. 7 (9), 7500-7512 (2013).
  4. Xu, F., et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater. 23 (37), 4254-4260 (2011).
  5. Kito, T., et al. iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep. 3, 1418 (2013).
  6. Mironov, V., Kasyanov, V., Markwald, R. R. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol. 26 (6), 338-344 (2008).
  7. Mattix, B. M., et al. Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials. 35 (3), 949-960 (2014).
  8. Henstock, J., El Haj, A. Controlled mechanotransduction in therapeutic MSCs: can remotely controlled magnetic nanoparticles regenerate bones?. Regen Med. 10 (4), 377-380 (2015).
  9. Fayol, D., et al. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. Adv Mater. 25 (18), 2611-2616 (2013).
  10. Bartlett, W., et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 87 (5), 640-645 (2005).
  11. Batty, L., Dance, S., Bajaj, S., Cole, B. J. Autologous chondrocyte implantation: an overview of technique and outcomes. ANZ J Surg. 81, 18-25 (2011).
  12. Song, L., Baksh, D., Tuan, R. S. Mesenchymal stem cell-based cartilage tissue engineering: cells, scaffold and biology. Cytotherapy. 6 (6), 596-601 (2004).
  13. Boeuf, S., Richter, W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther. 1 (4), 31 (2010).
  14. Kock, L., van Donkelaar, C. C., Ito, K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 347 (3), 613-627 (2012).
  15. Schon, B. S., et al. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell Tissue Res. , (2012).
  16. Robert, D., et al. Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials. 31 (7), 1586-1595 (2010).
  17. Luciani, N., et al. Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomaterialia. 37, 101-110 (2016).
  18. Wilhelm, C., Gazeau, F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials. 29 (22), 3161-3174 (2008).
  19. Fayol, D., Luciani, N., Lartigue, L., Gazeau, F., Wilhelm, C. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking. Adv Healthc Mater. 2 (2), 313-325 (2013).
  20. Wilhelm, C., Gazeau, F., Bacri, J. C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J. 31 (2), 118-125 (2002).
  21. Autissier, A., Le Visage, C., Pouzet, C., Chaubet, F., Letourneur, D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 6 (9), 3640-3648 (2010).
  22. Singh, N., Jenkins, G. J. S., Asadi, R., Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews. 1, (2010).
  23. Lee, J. H., Hur, W. Scaffold-free formation of a millimeter-scale multicellular spheroid with an internal cavity from magnetically levitated 3T3 cells that ingested iron oxide-containing microspheres. Biotechnol Bioeng. 111 (5), 1038-1047 (2014).
  24. Mattix, B., et al. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomaterialia. 10 (2), 623-629 (2014).
  25. Mazuel, F., et al. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano. 10 (8), 7627-7638 (2016).
  26. Kim, J. A., et al. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials. 34 (34), 8555-8563 (2013).
  27. Shimizu, K., Ito, A., Honda, H. Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J Biomed Mater Res B Appl Biomater. 77 (2), 265-272 (2006).
  28. Sensenig, R., Sapir, Y., MacDonald, C., Cohen, S., Polyak, B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond). 7 (9), 1425-1442 (2012).
  29. Waldman, S. D., Couto, D. C., Grynpas, M. D., Pilliar, R. M., Kandel, R. A. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater. 13, 66-74 (2007).
  30. Takahashi, I., et al. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci. 111 (14), 2067-2076 (1998).
  31. Campbell, J. J., Lee, D. A., Bader, D. L. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology. 43, 455-470 (2006).
  32. Vunjak-Novakovic, G., et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 17 (1), 130-138 (1999).

Play Video

Cite This Article
Van de Walle, A., Wilhelm, C., Luciani, N. 3D Magnetic Stem Cell Aggregation and Bioreactor Maturation for Cartilage Regeneration. J. Vis. Exp. (122), e55221, doi:10.3791/55221 (2017).

View Video