Summary

Microfluidic Platform with Multiplexed Electronic Detection for Spatial Tracking of Particles

Published: March 13, 2017
doi:

Summary

We demonstrate a microfluidic platform with an integrated surface electrode network that combines resistive pulse sensing (RPS) with code division multiple access (CDMA), to multiplex detection and sizing of particles in multiple microfluidic channels.

Abstract

Microfluidic processing of biological samples typically involves differential manipulations of suspended particles under various force fields in order to spatially fractionate the sample based on a biological property of interest. For the resultant spatial distribution to be used as the assay readout, microfluidic devices are often subjected to microscopic analysis requiring complex instrumentation with higher cost and reduced portability. To address this limitation, we have developed an integrated electronic sensing technology for multiplexed detection of particles at different locations on a microfluidic chip. Our technology, called Microfluidic CODES, combines Resistive Pulse Sensing with Code Division Multiple Access to compress 2D spatial information into a 1D electrical signal. In this paper, we present a practical demonstration of the Microfluidic CODES technology to detect and size cultured cancer cells distributed over multiple microfluidic channels. As validated by the high-speed microscopy, our technology can accurately analyze dense cell populations all electronically without the need for an external instrument. As such, the Microfluidic CODES can potentially enable low-cost integrated lab-on-a-chip devices that are well suited for the point-of-care testing of biological samples.

Introduction

Accurate detection and analysis of biological particles such as cells, bacteria or viruses suspended in liquid is of great interest for a range of applications1,2,3. Well-matched in size, microfluidic devices offer unique advantages for this purpose such as high-sensitivity, gentle sample manipulation and well-controlled microenvironment4,5,6,7. In addition, microfluidic devices can be designed to employ a combination of fluid dynamics and force fields to passively fractionate a heterogeneous population of biological particles based on various properties8,9,10,11,12. In those devices, the resultant particle distribution can be used as readout but spatial information is typically accessible only through microscopy, limiting the practical utility of the microfluidic device by tying it to a lab infrastructure. Therefore, an integrated sensor that can readily report particles' spatiotemporal mapping, as they are manipulated on a microfluidic device, can potentially enable low-cost, integrated lab-on-a-chip devices that are particularly attractive for the testing of samples in mobile, resource-limited settings.

Thin film electrodes have been used as integrated sensors in microfluidic devices for various applications13,14. Resistive Pulse Sensing (RPS) is particularly attractive for integrated sensing of small particles in microfluidic channels as it offers a robust, sensitive, and high-throughput detection mechanism directly from electrical measurements15. In RPS, the impedance modulation between a pair of electrodes, immersed in an electrolyte, is used as a means to detect a particle. When the particle passes through an aperture, sized on the order of the particle, the number and amplitude of transient pulses in the electrical current are used to count and size particles, respectively. Moreover, the sensor geometry can be designed with a photolithographic resolution to shape resistive pulse waveforms in order to enhance sensitivity16,17,18,19 or to estimate vertical position of particles in microfluidic channels20.

We have recently introduced a scalable and simple multiplexed resistive pulse sensing technology called Microfluidic Coded Orthogonal Detection by Electrical Sensing (Microfluidic CODES)21. Microfluidic CODES relies on an interconnected network of resistive pulse sensors, each consisting of an array of electrodes micromachined to modulate conduction in a unique, distinguishable manner, so as to enable multiplexing. We have specifically designed each sensor to produce orthogonal electrical signals similar to the digital codes used in code division multiple access22 (CDMA) telecommunication networks, so that individual resistive pulse sensor signal can be uniquely recovered from a single output waveform, even if signals from different sensors interfere. In this way, our technology compresses 2D spatial information of particles into a 1D electrical signal, permitting monitoring of particles at different locations on a microfluidic chip, while keeping both device- and system-level complexity to a minimum.

In this paper, we present a detailed protocol for experimental and computational methods necessary to use the Microfluidic CODES technology, as well as representative results from its use in analysis of simulated biological samples. Using the results from a prototype device with four multiplexed sensors as an example to explain the technique, we provide protocols on (1) the microfabrication process to create microfluidic devices with the Microfluidic CODES technology, (2) the description of the experimental setup including the electronic, optical, and fluidic hardware, (3) the computer algorithm for decoding interfering signals from different sensors, and (4) the results from detection and analysis of cancer cells in microfluidic channels. We believe that using the detailed protocol described here, other researchers can apply our technology for their research.

Protocol

1. Design of Coding Electrodes Note: Figure 1a shows the 3-D structure of the micropatterned electrodes. Design a set of four 7-bit Gold codes for encoding the microfluidic channels23. Construct two linear feedback shift-registers (LFSRs), each representing a primitive polynomial. Use the LFSRs to generate a preferred pair of 7-bit m-sequences. Cyclically shift the preferred pair of m-seque…

Representative Results

A Microfluidic CODES device consisting of four sensors distributed over four microfluidic channels is shown in Figure 1b. In this system, the cross-section of each microfluidic channel was designed to be close to the size of a cell so that (1) multiple cells cannot pass over the electrodes in parallel and (2) cells remain close to the electrodes increasing the sensitivity. Each sensor is designed to generate a unique 7-bit digital code. The device was then tested using a …

Discussion

Multiple resistive pulse sensors have previously been incorporated into microfluidic chips28,29,30,31,32. In these systems, resistive pulse sensors were either not multiplexed28,29,30,31 or they required individual sensors to be driv…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Science Foundation Award No. ECCS 1610995. The authors would like to thank the Institute of Electronics and Nanotechnology and the Parker H. Petit Institute for Bioengineering and Bioscience staff for their support in using shared facilities. The authors also would like to thank Chia-Heng Chu for his help in preparing the manuscript.

Materials

98% Sulfuric Acid    BDH Chemicals BDH3074-3.8LP
30% Hydrogen Peroxide   BDH Chemicals BDH7690-3
Trichlorosilane Aldrich Chemistry 235725-100G
NR9-1500PY Negative Photoresist Furuttex
Resist Developer RD6 Furuttex
Acetone BDH Chemicals BDH1101-4LP
SU-8 2015 Negative Photoresist Microchem SU8-2015
SU-8 Developer Microchem Y010200
Polydimethylsiloxane (PDMS) Dow Corning 3097358-1004 Sylgard 184 Silicone Elastomer Kit
Isopropyl Alcohol BDH Chemicals BDH1133-4LP
RPMI 1640 Corning Cellgro 10-040-CV
Fetal Bovine Serum (FBS) Seradigm 1500-050
Penicillin-Streptomycin Amresco K952-100ML
Phosphate-Buffered Saline (PBS) Corning Cellgro 21-040-CM
PHD 22/2000 Syringe Pump Harvard Apparatus 70-2001
HF2LI Lock-in Amplifier Zurich Instrument
HF2TA Current Amplifier Zurich Instrument
Eclipse Ti-U Microscope Nikon Corporation
DS-Fi2 High-Definition Color Camera  Nikon Corporation
v7.3 High-speed Camera Phantom
PCIe-6361 Data Acquisition Board  National Instruments 781050-01
BNC-2120 Shielded Connector Block National Instruments 777960-01 
PX-250 Plasma Treatment System Nordson MARCH 

References

  1. De Roy, K., Clement, L., Thas, O., Wang, Y., Boon, N. Flow cytometry for fast microbial community fingerprinting. Water Res. 46 (3), 907-919 (2012).
  2. Vives-Rego, J., Lebaron, P., Nebe-von Caron, G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev. 24 (4), 429-448 (2000).
  3. Alvarez-Barrientos, A., Arroyo, J., Cantón, R., Nombela, C., Sánchez-Pérez, M. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev. 13 (2), 167-195 (2000).
  4. Toner, M., Irimia, D. Blood-on-a-chip. Annu Rev Biomed Eng. 7, 77-103 (2005).
  5. Mehling, M., Tay, S. Microfluidic cell culture. Current Opin Biotech. 25, 95-102 (2014).
  6. Sarioglu, A. F., et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 12 (7), 685-691 (2015).
  7. Cermak, N., et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol. , (2016).
  8. Gossett, D., et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem. 397 (8), 3249-3267 (2010).
  9. Tsutsui, H., Ho, C. Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun. 36 (1), 92-103 (2009).
  10. Edwards, T. L., Gale, B. K., Frazier, A. B. A microfabricated thermal field-flow fractionation system. Anal Chem. 74 (6), 1211-1216 (2002).
  11. Wang, M. M., et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol. 23 (1), 83-87 (2005).
  12. Shields, C. W., Reyes, C. D., López, G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 15 (5), 1230-1249 (2015).
  13. Gawad, S., Schild, L., Renaud, P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip. 1 (1), 76-82 (2001).
  14. Haandbæk, N., Bürgel, S. C., Heer, F., Hierlemann, A. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip. 14 (2), 369-377 (2014).
  15. Bayley, H., Martin, C. Resistive-pulse sensing-from microbes to molecules. Chem Rev. 100 (7), 2575-2594 (2000).
  16. Polling, D., Deane, S. C., Burcher, M. R., Glasse, C., Reccius, C. H. Coded electrodes for low signal-noise ratio single cell detection in flow-through impedance spectrophy. , 3-7 (2010).
  17. Javanmard, M., Davis, R. W. Coded corrugated microfluidic sidewalls for code division multiplexing. IEEE Sensors J. 13 (5), 1399-1400 (2013).
  18. Balakrishnan, K. R., et al. Node-pore sensing: a robust, high-dynamic range method for detecting biological species. Lab Chip. 13 (7), 1302-1307 (2013).
  19. Emaminejad, S., Talebi, S., Davis, R. W., Javanmard, M. Multielectrode sensing for extraction of signal from noise in impedance cytometry. IEEE Sensors J. 15 (5), 2715-2716 (2015).
  20. Spencer, D., Caselli, F., Bisegna, P., Morgan, H. High accuracy particle analysis using sheathless microfluidic impedance cytometry. Lab Chip. 16 (2016), 2467-2473 (2016).
  21. Liu, R., Wang, N., Kamili, F., Sarioglu, A. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels. Lab Chip. 16 (8), 1350-1357 (2016).
  22. Buehrer, R. Code Division Multiple Access (CDMA). Synthesis Lectures on Communications. 1 (1), 1-192 (2006).
  23. Proakis, J. . Digital Communications. , (1989).
  24. Patel, P., Holtzman, J. Analysis of a simple successive interference cancellation scheme in a DS/CDMA system. IEEE J Sel Areas Commun. 12 (5), 796-807 (1994).
  25. Hui, A., Letaief, K. Successive interference cancellation for multiuser asynchronous DS/CDMA detectors in multipath fading links. IEEE Trans Commun. 46 (3), 384-391 (1998).
  26. Whittle, P. Prediction and regulation by linear least-square methods. J Macroecon. 7 (1), 126 (1985).
  27. Whitesides, G., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 3 (1), 335-373 (2001).
  28. Zhe, J., Jagtiani, A., Dutta, P., Hu, J., Carletta, J. A micromachined high throughput Coulter counter for bioparticle detection and counting. J Micromech Microeng. 17 (2), 304-313 (2007).
  29. Song, Y., Yang, J., Pan, X., Li, D. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Electrophoresis. 36 (4), 495-501 (2015).
  30. Watkins, N., et al. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci Transl Med. 5 (214), 214ra170 (2013).
  31. Chen, Y., et al. Portable Coulter counter with vertical through-holes for high-throughput applications. Sensor Actuat B-Chem. 213, 375-381 (2015).
  32. Jagtiani, A., Carletta, J., Zhe, J. An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter. J Micromech Microeng. 21 (4), 045036 (2011).
  33. Gold, R. Optimal binary sequences for spread spectrum multiplexing (Corresp). IEEE Trans. Inform. Theory. 13 (4), 619-621 (1967).
  34. Dinan, E., Jabbari, B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun Mag. 36 (9), 48-54 (1998).
check_url/cn/55311?article_type=t

Play Video

Cite This Article
Wang, N., Liu, R., Sarioglu, A. F. Microfluidic Platform with Multiplexed Electronic Detection for Spatial Tracking of Particles. J. Vis. Exp. (121), e55311, doi:10.3791/55311 (2017).

View Video