Summary

Induction of an Inflammatory Response in Primary Hepatocyte Cultures from Mice

Published: March 10, 2017
doi:

Summary

Here, we show an enzymatic approach to isolate primary hepatocytes from adult mice, and we describe the quantification of an inflammatory response using ELISA and real-time PCR.

Abstract

The liver plays a decisive role in the regulation of systemic inflammation. In chronic kidney disease in particular, the liver reacts in response to the uremic milieu, oxidative stress, endotoxemia and the decreased clearance of circulating proinflammatory cytokines by producing a large number of acute-phase reactants. Experimental tools to study inflammation and the underlying role of hepatocytes are crucial to understand the regulation and contribution of hepatic cytokines to a systemic acute phase response and a prolonged pro-inflammatory scenario, especially in an intricate setting such as chronic kidney disease. Since studying complex mechanisms of inflammation in vivo remains challenging, resource-intensive and usually requires the usage of transgenic animals, primary isolated hepatocytes provide a robust tool to gain mechanistic insights into the hepatic acute-phase response. Since this in vitro technique features moderate costs, high reproducibility and common technical knowledge, primary isolated hepatocytes can also be easily used as a screening approach. Here, we describe an enzymatic-based method to isolate primary murine hepatocytes, and we describe the assessment of an inflammatory response in these cells using ELISA and quantitative real-time PCR.

Introduction

Chronic kidney disease (CKD) can be defined as a state of acute and chronic inflammation1. In patients with CKD, serum levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23) progressively rise in order to maintain serum phosphate homeostasis2. Increased serum FGF23 levels are independently associated with cardiovascular morbidity and mortality among patients who are beginning hemodialysis treatment3,4. Furthermore, several clinical studies have shown a strong correlation between elevated FGF23 levels and serum levels of C-reactive protein (CRP), Interleukin-6 (IL-6) and Tumor Necrosis Factor α (TNFα)5,6. Moreover, in an experimental study, we have recently demonstrated that FGF23 can directly target hepatocytes and cause an inflammatory response by increasing CRP and IL-6 production in the liver7. Hence, FGF23 might act as a circulating factor that contributes to systemic inflammation in CKD.

In the early 70's, primary hepatocytes were isolated and studied for the first time8. Since then primary cultured hepatic cells have been extensively used to examine metabolic processing, hormonal function, drug metabolism and toxicity as well as immunity and inflammatory responses9,10. Previous protocols have mainly described the enzymatic isolation of primary hepatocytes from human liver tissue11,12. While an excellent model, this leaves out the ability to study how genetic manipulation affects complex hepatic signaling mechanisms as well as functional consequences upon different types of stimuli. In the following, we describe the isolation of murine primary hepatocytes. Notably, the effect of several mediators of the hepatic acute-phase response, such as lipopolysaccharide (LPS), IL-6 and FGF23 can be analyzed in an easy, fast and reproducible manner13.

Herein, we present a protocol for the enzymatic isolation of hepatocytes from adult mice, and we demonstrate that established inducers of inflammation, such as LPS and IL-6, as well as novel inflammatory mediators such as FGF23, can directly stimulate expression and secretion of inflammatory cytokines, such as CRP and IL-6 in cultured hepatocytes.

Protocol

All animal protocols and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Miami Miller School of Medicine. 1. Preparation Preheat liver perfusion media and liver digest media in a water bath at 37 °C. Set up a perfusion pump (30 mL/min). Carefully prefill the tubing system of the pump with liver perfusion media. Avoid any air bubbles in the system and prepare the stereotactic microscope. C…

Representative Results

Histology Representative light microscopy images of primary isolated and cultured cells are depicted in Figure 1A. Immunocytochemical analysis demonstrates that isolated hepatocytes highly express albumin (red) as well as fibroblast growth factor receptor 4 (FGFR4) (green). Nuclei are stained with 4',6-diamidino-2-phenylindole (DAPI) (blue). (Figure 1B). <p class="jove_step" fo:keep-togethe…

Discussion

Isolating primary hepatocytes from mice is a fast, inexpensive and reliable tool to study inflammatory responses ex vivo. If performed correctly, results can be easily generated and reproduced in a timely and cost-efficient manner. The following points should be carefully assessed in order to ensure a successful isolation.

The surgical incision and the cannulation of the IVC should be performed under general anesthesia and not after euthanasia. A young, inexperienced investigator will…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the NIH (R01HL128714 to C.F.) and (F31DK10236101 to K.S) and the American Heart Association (C.F. and A.G.).

Materials

Consumables
Cell Strainer 70 μm Nylon cell strainer Falcon 352350
BD Insyte Autoguard BD 381412
50 mL Polypropylene Conical Tube Falcon 352098
100 6-inch Cotton Tipped Applicators  Puritan 806-WC
1cc U-100 Insulin Syringe 28 G 1/2 Becton Dickinson 329420
Tissue Culture Dish 100 x 20 mm Style Corning 353003
6 well Cell Culture Cluster Costar 3516
5/0 Black Braided Surgical Silk (100 yards) LOOK SP115
Name Company Catalog Number Comments
Equipment
Minipuls 3 Perfusion Pump Gilson F155007
Hemacytometer Kits, Propper VWR 48300-474
Hemacytometer Cover Glasses, Propper VWR 48300-470
Surgical Scissers – Sharp/Blunt F.S.T. 14001-12
Iris Scissors-ToughCut Straight F.S.T. 14058-11
Dumont SS-45 Forceps F.S.T. 11203-25
Student Tissue Forceps F.S.T. 991121-12
Name Company Catalog Number Comments
Reagents
Acetic acid solution, 2.0 N Sigma     A8976-100ML
Isoflurane, USP 250 mL Piramal Healthcare    66794-013-25
KetaVed 1000mg/10mL (100mg/mL) VEDCO     50989-161-06
Xylazine 100 mg/mL AnaSed Injection 139-236
Willams' Medium E (1x) gibco 12551-032
Liver Perfusion Medium (1x) gibco 17701-038
Liver Digest Medium (1x) Life Technologies 17703034
Primary Hepatocyte Thawing and Plating Supplements Life Technologies CM3000
Primary Hepatocyte Maintenance Supplements Life Technologies CM4000
Phosphate Buffer Saline (PBS) pH 7.4 ThermoFisher scientific 10010031
Collagen Type 1 Corning 354236
Trypan Blue Solution VWR 45000-717

References

  1. Silverstein, D. M. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephro. 24 (8), 1445-1452 (2008).
  2. Isakova, T., et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79 (12), 1370-1378 (2011).
  3. Faul, C., et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 121 (11), 4393-4408 (2011).
  4. Gutiérrez, O. M., et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N England J Med. 359 (6), 584-592 (2008).
  5. Munoz Mendoza, J., et al. Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol. 7 (7), 1155-1162 (2012).
  6. Hanks, L. J., Casazza, K., Judd, S. E., Jenny, N. S., Gutiérrez, O. M. Associations of Fibroblast Growth Factor-23 with Markers of Inflammation, Insulin Resistance and Obesity in Adults. PLoS ONE. 10 (3), e0122885 (2015).
  7. Singh, S., et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. , 1-12 (2016).
  8. Howard, R. B., Christensen, A. K., Gibbs, F. A., Pesch, L. A. The enzymatic preparation of isolated intact parenchymal cells from rat liver. J Cell Biol. 35 (3), 675-684 (1967).
  9. Moshage, H. J., et al. The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. Bioch Biophysi Res Commun. 155 (1), 112-117 (1988).
  10. Soldatow, V. Y., LeCluyse, E. L., Griffith, L. G., Rusyn, I. In vitro models for liver toxicity testing. Toxicol. Res. 2 (1), 23-39 (2013).
  11. Lee, S. M. L., Schelcher, C., Demmel, M., Hauner, M., Thasler, W. E. Isolation of Human Hepatocytes by a Two-step Collagenase Perfusion Procedure. J Vis Exp. (79), (2013).
  12. Kegel, V., et al. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells. J Vis Exp. (109), (2016).
  13. Moshage, H., et al. Cytokines and the hepatic acute phase response. J Pathol. 181 (3), 257-266 (1997).
  14. Klaunig, J. E., et al. Mouse liver cell culture. I. Hepatocyte isolation. In vitro. 17 (10), 913-925 (1981).
  15. Lu, Y. C., Yeh, W. C., Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine. 42 (2), 145-151 (2008).
  16. Schmidt-Arras, D., Rose-John, S. IL-6 pathway in the liver: From physiopathology to therapy. J Hepatol. 64 (6), 1403-1415 (2016).
  17. Grabner, A., et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 22 (6), 1020-1032 (2015).
  18. Shulman, M., Nahmias, Y. Chapter 17, Long-Term Culture and Coculture of Primary Rat and Human Hepatocytes. Methods Mol Biol. 945, 287-302 (2012).
check_url/cn/55319?article_type=t

Play Video

Cite This Article
Czaya, B., Singh, S., Yanucil, C., Schramm, K., Faul, C., Grabner, A. Induction of an Inflammatory Response in Primary Hepatocyte Cultures from Mice. J. Vis. Exp. (121), e55319, doi:10.3791/55319 (2017).

View Video