Summary

Combining Mitotic Cell Synchronization and High Resolution Confocal Microscopy to Study the Role of Multifunctional Cell Cycle Proteins During Mitosis

Published: December 05, 2017
doi:

Summary

We present a protocol for double thymidine synchronization of HeLa cells followed by analysis using high resolution confocal microscopy. This method is key to obtaining large number of cells that proceed synchronously from S phase to mitosis, enabling studies on mitotic roles of multifunctional proteins which also possess interphase functions.

Abstract

Study of the various regulatory events of the cell cycle in a phase-dependent manner provides a clear understanding about cell growth and division. The synchronization of cell populations at specific stages of the cell cycle has been found to be very useful in such experimental endeavors. Synchronization of cells by treatment with chemicals that are relatively less toxic can be advantageous over the use of pharmacological inhibitory drugs for the study of consequent cell cycle events and to obtain specific enrichment of selected mitotic stages. Here, we describe the protocol for synchronizing human cells at different stages of the cell cycle, including both in S phase and M phase with a double thymidine block and release procedure for studying the functionality of mitotic proteins in chromosome alignment and segregation. This protocol has been extremely useful for studying the mitotic roles of multifunctional proteins which possess established interphase functions. In our case, the mitotic role of Cdt1, a protein critical for replication origin licensing in G1 phase, can be studied effectively only when G2/M-specific Cdt1 can be depleted. We describe the detailed protocol for depletion of G2/M-specific Cdt1 using double thymidine synchronization. We also explain the protocol of cell fixation, and live cell imaging using high resolution confocal microscopy after thymidine release. The method is also useful for analyzing the function of mitotic proteins under both physiological and perturbed conditions such as for Hec1, a component of the Ndc80 complex, as it enables one to obtain large sample sizes of mitotic cells for fixed and live cell analysis as we show here.  

Introduction

In the cell cycle, cells undergo a series of highly regulated and temporally controlled events for the accurate duplication of their genome and proliferation. In mammals, the cell cycle consists of interphase and M-phase. In interphase, which consists of three stages- G1, S, and G2, the cell duplicates its genome and undergoes growth that is necessary for normal cell cycle progression1,2. In the M-phase, which consists of mitosis (prophase, prometaphase, metaphase, anaphase, and telophase) and cytokinesis, a parental cell produces two genetically identical daughter cells. In mitosis, sister chromatids of duplicated genome are condensed (prophase) and are captured at their kinetochores by microtubules of the assembled mitotic spindle (prometaphase), that drives their alignment at the metaphase plate (metaphase) followed by their equal segregation when sister chromatids are split toward and transported to opposite spindle poles (anaphase). The two daughter cells are physically separated by the activity of an actin-based contractile ring (telophase and cytokinesis). The kinetochore is a specialized proteinaceous structure which assembles at the centromeric region of chromatids and serve as attachment sites for spindle microtubules. Its main function is to drive chromosome capture, alignment, and aid in correcting improper spindle microtubule attachment, while mediating the spindle assembly checkpoint to maintain the fidelity of chromosome segregation3,4.

The technique of cell synchronization serves as an ideal tool for understanding the molecular and structural events involved in cell cycle progression. This approach has been used to enrich cell populations at specific phases for various types of analyses, including profiling of gene expression, analyses of cellular biochemical processes, and detection of subcellular localization of proteins. Synchronized mammalian cells can be used not only for the study of individual gene products, but also for approaches involving analysis of whole genomes including microarray analysis of gene expression5, miRNA expression patterns6, translational regulation7, and proteomic analysis of protein modifications8. Synchronization can also be used to study the effects of gene expression or protein knock-down or knock-out, or of chemicals on cell cycle progression.

Cells can be synchronized at the different stages of the cell cycle. Both physical and chemical methods are widely used for cell synchronization. The most important criteria for cell synchronization are that synchronization should be noncytotoxic and reversible. Because of the potential adverse cellular consequences of synchronizing cells by pharmacological agents, chemical-dependent methods can be advantageous for studying key cell cycle events. For example, hydroxyurea, amphidicolin, mimosine, and lovastatin, can be used for cell synchronization at G1/S phase but, because of their effect on the biochemical pathways they inhibit, they activate cell cycle checkpoint mechanisms and kill an important fraction of the cells9,10. On the other hand, feedback inhibition of DNA replication by adding thymidine to the growth media, known as "thymidine block", can arrest the cell cycle at certain points11,12,13. Cells can also be synchronized at G2/M phase by treating with nocodazole and RO-33069,14.Nocodazole, which prevents microtubule assembly, has a relatively high cytotoxicity. Moreover, nocodazole-arrested cells can return to interphase precociously by mitotic slippage. Double thymidine block arrest cells at G1/S phase and after release from the block, cells are found to proceed synchronously through G2 and into mitosis. The normal progression of the cell cycle for cells released from thymidine block can be observed under high resolution confocal microscopy by either cell fixation or live imaging. The effect of perturbation of mitotic proteins can be studied specifically when cells enter and proceed through mitosis after release from double thymidine block. Cdt1, a multifunctional protein, is involved in DNA replication origin licensing in the G1 phase and is also required for kinetochore microtubule attachments during mitosis15. To study the function of Cdt1 during mitosis, one needs to adopt a method that avoids the effect of its depletion on replication licensing during G1 phase, while at the same time effecting its depletion specifically during the G2/M phase only. Here, we present detailed protocols based on the double thymidine block to study the mitotic role of proteins performing multiple functions during different stages of the cell cycle by both fixed and live-cell imaging.

Protocol

1. Double Thymidine Block and Release: Reagent Preparations Make 500 mL Dulbecco's modified Eagle medium (DMEM) medium supplemented with 10% FBS, penicillin, and streptomycin. Make 100 mM stock of thymidine in sterile water and store in aliquots at -80 °C. 2. Protocol for Fixed Cell Imaging of Mitotic Progression (Figure 1A) On day 1, seed ~2 x 105 HeLa cells into the wells of a 6-well plate with a cover…

Representative Results

Study of mitotic progression and microtubule stability in cells fixed after release from double thymidine block Cdt1 is involved in licensing of DNA replication origins in the G1 phase. It is degraded during S phase but re-accumulates in G2/M phase. To study its role in mitosis, the endogenous Cdt1 needs to be depleted specifically at the G/M phase using the most suitable cell synchronization technique, the double thymidine block15. Cells wer…

Discussion

The most critical advantage of double thymidine synchronization is that it provides an increased sample size of mitotic cells in a short time window with many of these cells entering mitosis in unison, thus also enabling analyses of chromosome alignment, bipolar spindle formation, and chromosome segregation with much higher efficiency.

Many regulatory protein complexes and signaling pathways are devoted to ensuring normal progression through mitosis and deregulation of this process may led to …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are grateful to Dr. Kozo Tanaka of Tohoku University, Japan for sharing HeLa cells stably expressing mCherry-Histone H2B and GFP-α-tubulin. This work was supported by an NCI grant to DV (R00CA178188) and by start-up funds from Northwestern University.

Materials

DMEM (1X) Life Technologies 11965-092 Store at 4 degree C
DPBS (1X) Life Technologies 14190-144 Store at 4 degree C
Leibovitz’s (1X) L-15 medium Life Technologies 21083-027 Store at 4 degree C
Serum reduced medium (Opti-MEM) Life Technologies 319-85-070 Store at 4 degree C
Penicillin and streptomycin Life Technologies 15070-063 (Pen Strep) 1:1000 dilution
Dharmafect2 GE Dharmacon T-2002-02 Store at 4 degree C
Thymidine MP Biomedicals LLC 103056 Dissolved in sterile distiled water
Cdt1 siRNA Life Technologies Ref 10
Hec1 siRNA Life Technologies Ref 13
HeLa cells expressing GFP-H2B
HeLa cells expressing GFP-α-tubulin and mCherry H2B Generous gift from Dr. Kozo Tanaka of Tohoku university, Japan
Formaldehyde solution Sigma-Aldrich Corporation F8775 Toxic, needs caution
DAPI Sigma-Aldrich Corporation D9542 Toxic, needs caution
Mouse anti-α-tubulin Santa Cruz Biotechnology Sc32293 1:1000 dilution
Rabbit ant-Zwint1 Bethyl A300-781A 1:400 dilution
Mouse anti-phospho-γH2AX (Ser139) Upstate Biotechnology 05-626, clone JBW301 1:300 dilution
Alexa 488 Jackson ImmunoResearch 1:250 dilution
Rodamine Red-X Jackson ImmunoResearch 1:250 dilution
BioLite 6 well multidish Thermo Fisher Scientific 130184
35MM Glass bottom dish MatTek Corporation P35GCOL-1.5-14-C
Nikon Eclipse TiE inverted microscope Nikon Instruments
Spinning disc for confocal Yokagawa CSU-X1
Ultra 888 EM-CCD Camera Andor iXon Ultra EMCCD
4 wave length laser Agilent Technologies
Incubation System for Microscopes Tokai Hit TIZB
NIS-elements software Nikon Instruments

References

  1. Lajtha, L. G., Oliver, R., Berry, R., Noyes, W. D. Mechanism of radiation effect on the process of synthesis of deoxyribonucleic acid. Nature. 182 (4652), 1788-1790 (1958).
  2. Puck, T. T., Steffen, J. Life Cycle Analysis of Mammalian Cells. I. A Method for Localizing Metabolic Events within the Life Cycle, and Its Application to the Action of Colcemide and Sublethal Doses of X-Irradiation. Biophys. J. 3, 379-392 (1963).
  3. Santaguida, S., Musacchio, A. The life and miracles of kinetochores. EMBO J. 28 (17), 2511-2531 (2009).
  4. Musacchio, A., Desai, A. A Molecular View of Kinetochore Assembly and Function. Biology (Basel). 6 (1), E5 (2017).
  5. Chaudhry, M. A., Chodosh, L. A., McKenna, W. G., Muschel, R. J. Gene expression profiling of HeLa cells in G1 or G2 phases. Oncogene. 21 (12), 1934-1942 (2002).
  6. Zhou, J. Y., Ma, W. L., Liang, S., Zeng, Y., Shi, R., Yu, H. L., Xiao, W. W., Zheng, W. L. Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep. 42 (9), 593-598 (2009).
  7. Stumpf, C. R., Moreno, M. V., Olshen, A. B., Taylor, B. S., Ruggero, D. The translational landscape of the mammalian cell cycle. Mol. Cell. 52 (4), 574-582 (2013).
  8. Chen, X., Simon, E. S., Xiang, Y., Kachman, M., Andrews, P. C., Wang, Y. Quantitative proteomics analysis of cell cycle-regulated Golgi disassembly and reassembly. J. Biol. Chem. 285 (10), 7197-7207 (2010).
  9. Rosner, M., Schipany, K., Hengstschläger, M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nature Protocols. 8 (3), 602-626 (2013).
  10. Coquelle, A., et al. Enrichment of non-synchronized cells in the G1, S and G2 phases of the cell cycle for the study of apoptosis. Biochem. Pharmacol. 72 (11), 1396-1404 (2006).
  11. Amon, A. Synchronization procedures. Methods Enzymol. 351, 457-467 (2002).
  12. Cooper, S. Rethinking synchronization of mammalian cells for cell cycle analysis. Cell Mol. Life Sci. 60 (6), 1099-1106 (2003).
  13. Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., Botstein, D. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13 (6), 1977-2000 (2002).
  14. Vassilev, L. T., et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A. 103 (28), 10660-10665 (2006).
  15. Varma, D., Chandrasekaran, S., Sundin, L. J., Reidy, K. T., Wan, X., Chasse, D. A., Nevis, K. R., DeLuca, J. G., Salmon, E. D., Cook, J. G. Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nat. Cell Biol. 14 (6), 593-603 (2012).
  16. Garcia, M., Westley, B., Rochefort, H. 5-Bromodeoxyuridine specifically inhibits the synthesis of estrogen-induced proteins in MCF7 cells. Eur. J. Biochem. 116 (2), 297-301 (1981).
  17. Bostock, C. J., Prescott, D. M., Kirkpatrick, J. B. An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp. Cell Res. 68 (1), 163-168 (1971).
  18. Martin-Lluesma, S., Stucke, V. M., Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science. 297, 2267-2270 (2002).
  19. Brouwers, N., Mallol Martinez, N., Vernos, I. Role of Kif15 and its novel mitotic partner KBP in K-fiber dynamics and chromosome alignment. PLoS One. 12 (4), e0174819 (2017).
  20. Dou, Z., et al. Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proc Natl Acad Sci USA. 112 (33), E4546-E4555 (2015).
  21. Chan, Y. W., Jeyaprakash, A. A., Nigg, E. A., Santamaria, A. Aurora B controls kinetochore-microtubule attachments by inhibiting Ska complex-KMN network interaction. J Cell Biol. 196 (5), 563-571 (2012).
check_url/cn/56513?article_type=t

Play Video

Cite This Article
Amin, M. A., Varma, D. Combining Mitotic Cell Synchronization and High Resolution Confocal Microscopy to Study the Role of Multifunctional Cell Cycle Proteins During Mitosis. J. Vis. Exp. (130), e56513, doi:10.3791/56513 (2017).

View Video