JoVE 科学教育
生物化学
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 科学教育 生物化学
Metabolic Labeling
  • 00:00概述
  • 00:31Principles of Metabolic Labeling
  • 03:39Isotopic Labeling Procedure
  • 05:30Photoreactive Labeling Procedure
  • 06:31Applications
  • 08:06Summary

代谢标记

English

分享

概述

代谢标记用来探测生化转换和修改发生在一个单元格中。这被通过使用模拟天然生物分子的结构的化学类似物。细胞利用其内源性的生化过程,生产标有的化合物的类似物。该标签允许成立为法团的检测及亲和标签,然后可以用来阐明使用其他生化分析技术,如 SDS — PAGE 和核磁共振的代谢途径。

该视频介绍代谢标记和显示两个一般程序的概念。 第一个使用同位素标记法,来表征的一种蛋白质磷酸化。第二封面感光的标签来表征蛋白质-蛋白质相互作用的代谢标记也三个应用程序内介绍: 植物材料贴标 RNA 来衡量动力学,标签在胚胎发育中的糖。

代谢标记用来探讨机械的一个单元格。这被通过使用化学类似物探测的生化变化和发生的修改。本视频将显示代谢标记,典型的原则,同位素和感光贴标过程和一些应用程序。

可以使用一系列的战略进行代谢标记。在这里,我们将描述同位素、 感光,和生物正交标记。

同位素标记法使用执行的结构类似物与对应的天然,化学完全相同,但有罕见同位素纳入他们的结构。在这 L-赖氨酸模拟碳和氮原子所取代碳 13 和氮-15。同位素的类似物在细胞会将其纳入其生化结构。代谢产物的细胞从收集和分析净化。稳定同位素样品分析使用质谱法或核磁共振波谱法等技术。与放射性标签样本进行分析使用液体闪烁计数和 x 射线的电影,将在同位素标记协议进行演示。

感光标签是官能团纳入稳定直到接触到的紫外线光的蛋白质。官能团形成活性基,将绑定到的最近的蛋白质。一个常见的例子,L-照片-亮氨酸,包含 diazirine 的戒指,那是感光的交联剂。与同位素标记法,还有一些化学不同照片无功的化学类似物与自然同行之间。细胞可能优先纳入天然化合物在类似物。因此,它是重要执行照片无功标签中自由的这种化合物被模仿。一旦暴露在紫外线辐射,照片反应基团标记的蛋白质成为不稳定和高活性,使其与相互作用蛋白交联创建复杂的一种蛋白质。交联的配合物,作为快照,然后可以用 sds-PAGE 和质谱方法分析。这提供了洞察什么反应都发生在代谢途径的识别反应物种和他们如何通过确定绑定站点进行交互。

Bioorthogonal 贴标战略利用类似物与小有小到无反应性与自然生物分子的官能团。例如,叠氮化合物是小的官能团,其反应性据说是正交的生化反应。在测出结扎,磷化氢组攻击叠氮组。这将生成一个附近的酯,造成保税胺配体分子反应过渡态。Bioorthogonal 官能纳入生物分子可以与检测标记荧光的官能团,如结扎和亲和标记抗原等。

现在,讨论了一些概念和代谢标记的策略,让我们看看在实验室过程。

代谢的标记实验的第一步是收集感兴趣的蛋白质。为了做到这一点的细胞生长在盘子里,和一种表达方法用来促进所需的蛋白质合成。在此示例、 富含亮氨酸重复激酶或 LRRK,表示。磷酸氢二钠,含放射性磷-32,用作模拟。必须采取适当措施防止电离辐射。这包括设置工作区域、 穿着适当的防护装备,以及检查放射性污染。一旦采取了安全措施,被制备含有同位素类似物的介质。从文化媒介是删除,替换成一个含同位素化学类似物,然后孵化。后孵化,细胞的裂解。裂解是收集和净化。

纯化后用 SDS-PAGE,然后转移到聚偏氟乙烯膜解决蛋白质。放射自显影由暴露膜 x 射线胶片和用荧光粉成像仪测量。免疫印迹用于测量聚偏氟乙烯膜相关蛋白水平。在此示例中磷酸化水平的富含亮氨酸重复激酶在 293T 细胞测定中合成。Autoradiogram 显示多少磷被纳入蛋白质。免疫印迹阐明了 LRRK 蛋白的水平。图像分析软件用于获取的蛋白质磷酸化水平的定量数据。

在这接下来的过程中,证明感光标签。首先,编写、 培养细胞。感光模拟是中期日志阶段添加到单元格和孵化。在此过程中使用了 p-benzoylphenylalanine。样本收集超过间隔,放在冰上。样品然后暴露,随着时间的推移获取快照的生化途径。感兴趣的蛋白质是经过提纯和解决使用 SDS — PAGE。

感光的标签策略用于标识与感兴趣的蛋白质进行交互的化合物。免疫印迹表明蛋白条带,表明高分子量蛋白质与辐照样品中存在。这些是从蛋白质-蛋白质相互作用在 UV 照射期间发生交联。

既然我们已经回顾了代谢标记程序,让我们看看一些过程的使用的方式。

代谢标记概念可以扩展到多细胞生物。植物生长在一个密封的环境,丰富的生产标记的植物材料的稳定同位素。含有碳-13 的二氧化碳被添加到存储模块,而氮-15 使用丰富的肥料。由此产生的收获的植物材料可以帮助回答问题关于碳和氮循环的生态系统。

标记使新合成的 RNA 分离旧 RNA。通过改变初始浓度的模拟,可以确定新的 RNA 合成反应动力学。结果表明,4 thiouridine 浓度影响多少新的 RNA 转录。此外,可以用分光光度计直接量化成 RNA 标签注册率。

使用双正交点击化学,可以标记在斑马鱼胚胎中的糖。鸡蛋被注射炔烃标签上糖结果标记化合物。在幼虫糖然后结扎对染料化合物在预期的发展阶段。在胚胎中的糖然后成像。不同时间点产生的糖可以通过标记在胚胎发育的不同阶段使用不同的颜色识别。

你刚看了朱庇特的视频上代谢标记。这个视频描述背后代谢标记的概念以及它们的战略,走过去两个的一般程序,和涉及的一些技术的使用。

谢谢观赏 !

Procedure

Disclosures

No conflicts of interest declared.

成績單

Metabolic labeling is used to investigate the machinery of a cell. This is accomplished using chemical analogs to probe the biochemical transformations and modifications that occur. This video will show the principles of metabolic labeling, typical isotopic and photoreactive labeling procedures, and some applications.

Metabolic labeling can be conducted using a number of strategies. Here we will describe isotopic, photoreactive, and bio-orthogonal labeling.

Isotopic labeling is performed using structural analogs that are chemically identical to their natural counterparts, but have uncommon isotopes incorporated into their structure. In this L-lysine analog the carbon and nitrogen atoms are replaced with carbon-13 and nitrogen-15. Cells cultured in the presence of isotopic analogs will incorporate them into their biochemical structures. Metabolites are collected from the cells and purified for analysis. Samples with stable isotopes are analyzed using techniques such as mass spectrometry or NMR spectroscopy. Samples with radioactive labels are analyzed using liquid scintillation counting and x-ray films, which will be demonstrated in the isotopic labeling protocol.

Photoreactive labels are functional groups incorporated into proteins, which are stable until exposed to ultraviolet light. The functional group forms a reactive radical, which binds to the nearest protein. A common example, L-photo-leucine, contains a diazirine ring, which is a photoreactive crosslinker. In contrast to isotopic labeling, there is some chemical dissimilarity between photo-reactive chemical analogs and their natural counterparts. Cells may preferentially incorporate natural compounds over analogs. Therefore, it is important to perform photo-reactive labeling in medium free of the compound being mimicked. Once exposed to ultraviolet radiation, the photo-reactive groups in a labeled protein become unstable and highly reactive, causing it to cross-link with interacting proteins, creating a protein complex. Cross-linked complexes, act as snapshots that can then be analyzed using SDS-PAGE and mass spectrometry methods. This provides insights into what reactions are occurring in the metabolic pathway by identifying reaction species and how they interact by determining binding sites.

Bioorthogonal labeling strategies utilize analogs with small functional groups that have little to no reactivity with natural biomolecules. For example, azides are small functional groups, whose reactivity is said to be orthogonal to biochemical reactions. In the Staudinger ligation, a phosphine group attacks the azido group. This yields a transition state that intramolecularly reacts with a nearby ester, resulting in an amine-bonded ligand. Bioorthogonal functional groups incorporated into biomolecules can be ligated with detection tags such as fluorescent functional groups, and affinity tags such as antigens.

Now that some concepts and strategies for metabolic labeling have been discussed, let’s look at the process in the laboratory.

The first step in a metabolic labeling experiment is to collect the protein of interest. To do this, cells are grown on a plate, and an expression method is used to promote synthesis of the desired protein. In this example, leucine-rich repeat kinases, or LRRK, are expressed. Disodium phosphate, containing radioactive phosphorus-32, is used as the analog. Proper measures must be taken to protect against ionizing radiation. This includes setting up a work area, wearing proper protective equipment, and checking for radioactive contamination. Once safety measures have been taken, the medium containing the isotopic analogs is prepared. The medium from the culture is removed and, replaced with one containing the isotopic chemical analogs and then incubated. Following incubation, the cells are lysed. The lysate is collected and purified.

After purification, proteins are resolved using SDS-PAGE and then transferred to a PVDF membrane. Autoradiography is performed by exposing the membrane to x-ray film and measured using a phosphor imager. Western blotting is used to measure relative protein levels in the PVDF membrane. In this example the phosphorylation levels of leucine-rich repeat kinases synthesized in 293T cells were measured. The autoradiogram shows how much phosphorous was incorporated into the protein. Western blotting elucidates the levels of the LRRK proteins. Image analysis software is used to obtain quantitative data of phosphorylation levels of the proteins.

In this next procedure, photoreactive labeling is demonstrated. First, the cells are prepared and cultured. The photoreactive analog is added to the cells at the mid-log phase and incubated. In this procedure p-benzoylphenylalanine is used. Samples are collected over intervals and put on ice. The samples are then exposed to obtain snapshots of the biochemical pathways over time. The proteins of interest are then purified and resolved using SDS-PAGE.

A photoreactive labeling strategy was used to identify compounds that interact with the protein of interest. Immunodetection with Western blotting shows protein bands that indicate higher molecular weight proteins are present in the irradiated samples. These are from cross-linking due to protein-protein interaction occurring during the UV irradiation.

Now that we’ve reviewed metabolic labeling procedures, let’s look at some of the ways the process is used.

Metabolic labeling concepts can be extended to multicellular organisms. Plants are grown in a sealed environment, rich in stable isotopes to produced labeled plant material. Carbon dioxide containing carbon-13 is added to the enclosure, while nitrogen-15 rich fertilizer is used. The resulting harvested plant material can help answer questions about carbon and nitrogen cycling from the ecosystem.

Labeling enables the separation of newly synthesized RNA from older RNA. By changing the initial concentration of analog, the kinetics of new RNA synthesis can be determined. The results show that the concentration of 4-thiouridine affects how much new RNA is transcribed. Additionally, incorporation rates of the label into RNA can be directly quantified with a spectrophotometer.

Using biorthogonal click chemistry, glycans in a zebra fish embryo can be labeled. The eggs are injected with a labeling compound that results in alkyne labels on the glycans. The glycans in the larvae are then ligated to a dye compound at the desired development stage. The glycans in the embryos are then imaged. Glycans produced at different time points can be identified by labeling using different colors at different stages of embryo development.

You’ve just watched JoVE’s video on metabolic labeling. This video described the concepts behind metabolic labeling and their strategies, went over two general procedures, and covered some of the uses of the techniques.

Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Metabolic Labeling. JoVE, Cambridge, MA, (2023).

Related Videos