Summary

猪手术模型对甲状腺手术的手术内神经监测

Published: February 11, 2019
doi:

Summary

本研究旨在建立猪模型甲状腺手术过程中神经监测的标准方案。在这里, 我们提出了一个方案, 以证明全身麻醉, 比较不同类型的电极, 并探讨电生理特征的正常和受伤的喉返神经。

Abstract

术中喉返神经 (rln) 会导致声带麻痹, 从而干扰言语, 并有可能干扰呼吸。近年来, 术中神经监测 (ionm) 已被广泛应用于一种辅助技术, 用于定位 rln、检测 rln 损伤和预测手术中的声带功能。许多研究还利用动物模型研究 ionm 技术的新应用, 并制定可靠的策略, 以防止术中 rln 损伤。本文的目的是介绍一种在 ionm 研究中使用猪模型的标准协议。本文介绍了诱导全身麻醉、进行气管插管的方法和实验设计, 探讨了 rln 损伤的电生理特征。该协议的应用可以提高在猪 ionm 研究中实施3r 原理 (替换、还原和细化) 的总体效果。

Introduction

虽然甲状腺切除术现在是世界范围内常见的手术, 术后语音功能障碍仍然是常见的。术中喉返神经 (rln) 会导致声带麻痹, 从而干扰言语, 并有可能干扰呼吸。此外, 喉上神经的外支的损伤可以通过影响音高和声带投射引起重大的声音变化。

甲状腺手术中的术中神经监测 (ionm) 作为一种辅助技术, 用于绘制和确认 rln、迷走神经 (vn) 和喉上神经 (ebsln) 的外支。由于 ionm 可用于证实和阐明 rln 损伤的机制, 并可用于检测 rln 的解剖变异, 可用于预测甲状腺切除术后声带功能。因此, ionm 在甲状腺手术中增加了一种新的功能动态, 并为外科医生提供仅通过直接可视化 12345无法获得的信息。,6,7.,8,9,10个

最近, 许多前瞻性研究利用猪模型优化了 ionm 技术的使用, 并建立了预防术中 rln 损伤111213、14的可靠策略. , 15,16,17,18,19,20。猪模型也被用来为从业者提供重要的教育和培训, 在临床应用的 ionm。

因此, 动物模型与 ionm 技术的结合是研究 rln 损伤21病理生理学一个有价值的工具。本文的目的是证明猪模型在 ionm 研究中的应用。具体介绍了如何诱导全身麻醉, 进行气管插管, 并建立了研究各种 rln 损伤类型的电生理特征的实验。

Protocol

动物实验获得台湾高雄医科大学动物护理和使用机构委员会 (iacuc) 批准 (议定书号: iacca-102046, 102046, 102046)。 1. 动物准备和麻醉 猪动物模型注: 本研究应用文献中描述的协议, 建立了 ion11、12、13、14、15、16、 <s…

Representative Results

电生理研究基线 emg 数据、最小最大刺激水平和刺激响应曲线使用标准单极刺激探针, vn 和 rln 刺激得到的最小刺激水平分别为0.1 至 0.3 ma。一般来说, 刺激电流与产生的 emg 振幅 11,17呈正相关。emg 振幅以最大刺激水平为 0.7 ma, 用于 vn 刺激, 0.5 ma 为 rln刺激 11。 <p class="jove_content" fo:keep-together.within-p…

Discussion

rln 和 ebsln 的损伤仍然是甲状腺手术引起的重要发病原因。直到最近, 神经损伤只能通过直接显示创伤来识别。使用 ionm 现在可以通过施加刺激和记录目标肌肉的收缩来进一步的 rln 功能识别。然而, 目前, 传统的间歇性和连续的 ionm 系统在假阳性和假阴性解释方面都有一些技术局限性。因此, 适当的动物模型是必要的这些临床问题。

最近, 大量的动物实验研究试图克服 ionm 的陷…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了高雄医科大学医院、高雄医科大学 (kmuh106-6r49) 和科技部 (最不发达国家 106-2314-b-042-my2.) 的资助。

Materials

Criticare systems nGenuity 8100E physiologic monitoring, including capnography, electrocardiography (ECG) and monitoring of oxygenation (SaO2)
Intraoperative NIM nerve monitoring systems Medtronic NIM-Response 3.0 monitor EMG activity from multiple muscles. If there is a change in nerve function, the NIM system may provide audible and visual warnings to help reduce the risk of nerve damage.
NIM TriVantage EMG Tube Medtronic 8229706 6 mm ID, 8.2 mm OD. The NIM TriVantage EMG Tube is a standard size, non-reinforced, DEHP-free PVC tube that features smooth, conductive silver ink electrodes and a cross-band to guide placement. It has reduced sensitivity to rotation and movement while offering increased EMG responses that facilitate improved nerve dissection.
NIM Contact Reinforced EMG Endotracheal Tube Medtronic 8229506 6 mm ID, 9 mm OD. The NIM Contact EMG Tube continuously monitors electromyography (EMG)
activity during surgery. An innovative design allows the tube to maintain contact,
even upon rotation. Vocal cords are more easily visible against the white band.
Recording electrode leads are twisted pair. Packaged sterile with one green and
one white subdermal needle. Single use.
NIM Standard Reinforced EMG Endotracheal Tube Medtronic 8229306 6 mm ID, 8.8 mm OD. The NIM Standard EMG Tube continuously monitors electromyography (EMG)
activity during surgery. Recording electrode leads are twisted pair. Packaged
sterile with one green and one white subdermal needle. Single use.
NIM Flex EMG Endotracheal Tube Medtronic 8229960 6 mm. The NIM Flex EMG Tube monitors vocal cord and recurrent laryngeal nerve EMG
activity during surgery. An updated, dual-channel design allows the tube to
maintain contact with the vocal cords, even upon rotation. Recording electrode
leads are twisted pair. Packaged sterile with one green and one white subdermal
needle. Single use.
Standard Prass Flush-Tip Monopolar Stimulator Probe Medtronic 8225101 Tips and Handles. For locating and mapping cranial nerves in the surgical field, the single-use
Standard Prass Monopolar Stimulating Probe features a flush 0.5 mm tip
diameter. The probe is insulated to the tip to prevent current shunting. Individually
sterile packaged.
Ball-Tip Monopolar Stimulator Probe Medtronic 8225275/ 8225276 Tip and Handle, 1.0 mm/ 2.3mm. Featuring a flexible ball tip and flexible shaft, the single-use Ball-Tip Monopolar
Stimulating Probe allows greater access to neural structures. The 1.0 mm tip
diameter allows atraumatic contact to larger neural structures. The probe is insulated
to the tip to prevent current shunting. Individually sterile packaged.
Yingling Flex Tip Monopolar Stimulator Probe Medtronic 8225251 Tips and Handles. The highly flexible single-use Yingling Monopolar Stimulating Probe allows
stimulation in areas outside the surgeon’s field of view. The platinum-iridium wire
of the probe is fully insulated to the ball tip to prevent current shunting. Individually
sterile packaged with one green subdermal electrode.
Prass Bipolar Stimulator Probe Medtronic 8225451 The single-use Prass Bipolar Stimulating Probe features a slim, flexible tip that
allows greater access to neural structures. The probe tip is 0.5 mm in distance
between cathode and anode for minimal shunting. Individually sterile packaged.
Concentric Bipolar Stimulator Probe Medtronic 8225351 The single-use Concentric Bipolar Stimulating Probe features a 360°
contact area. Insulation is complete to the active tip; cables and handles are
polarized. Individually sterile packaged.
Side-by-Side Bipolar Stimulator Probe Medtronic 8225401 The single-use Side-by-Side Bipolar Stimulating Probe features probe tips that
are 1.3 mm apart, allowing neural structures to be stimulated between the tips.
Insulation is complete to the active tip; cables and handles are polarized.
Individually sterile packaged.
APS (Automatic Periodic Stimulation) Electrode* Medtronic 8228052 / 8228053 2 mm/ 3mm. The APS Electrode offers continuous, real-time monitoring. The electrode is placed
on the nerve and can provide early warning of a change in nerve function.
Neotrode ECG Electrodes ConMed 1741C-003 The electrode is made of a clear tape material, which allows for continuous observation of the patient's skin during monitoring.
LigaSure Small Jaw Medtronic LF1212 A FDA-approved
electrothermal bipolar vessel sealing system for surgery

References

  1. Randolph, G. W., et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope. 121, S1-S16 (2011).
  2. Barczynski, M., et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 123, S1-S14 (2013).
  3. Chiang, F. Y., et al. The mechanism of recurrent laryngeal nerve injury during thyroid surgery–the application of intraoperative neuromonitoring. Surgery. 143 (6), 743-749 (2008).
  4. Chiang, F. Y., et al. Standardization of Intraoperative Neuromonitoring of Recurrent Laryngeal Nerve in Thyroid Operation. World Journal of Surgery. 34 (2), 223-229 (2010).
  5. Chiang, F. Y., et al. Anatomical variations of recurrent laryngeal nerve during thyroid surgery: how to identify and handle the variations with intraoperative neuromonitoring. The Kaohsiung Journal of Medical Sciences. 26 (11), 575-583 (2010).
  6. Chiang, F. Y., et al. Intraoperative neuromonitoring for early localization and identification of the recurrent laryngeal nerve during thyroid surgery. The Kaohsiung Journal of Medical Sciences. 26 (12), 633-639 (2010).
  7. Chiang, F. Y., et al. Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. American Journal of Otolaryngology. 33 (1), 1-5 (2012).
  8. Wu, C. W., et al. Vagal nerve stimulation without dissecting the carotid sheath during intraoperative neuromonitoring of the recurrent laryngeal nerve in thyroid surgery. Head Neck. 35 (10), 1443-1447 (2013).
  9. Wu, C. W., et al. Loss of signal in recurrent nerve neuromonitoring: causes and management. Gland Surgery. 4 (1), 19-26 (2015).
  10. Wu, C. W., et al. Recurrent laryngeal nerve injury with incomplete loss of electromyography signal during monitored thyroidectomy-evaluation and outcome. Langenbeck’s Archives of Surgery. 402 (4), 691-699 (2017).
  11. Wu, C. W., et al. Investigation of optimal intensity and safety of electrical nerve stimulation during intraoperative neuromonitoring of the recurrent laryngeal nerve: a prospective porcine model. Head Neck. 32 (10), 1295-1301 (2010).
  12. Lu, I. C., et al. A comparison between succinylcholine and rocuronium on the recovery profile of the laryngeal muscles during intraoperative neuromonitoring of the recurrent laryngeal nerve: A prospective porcine model. The Kaohsiung Journal of Medical Sciences. 29 (9), 484-487 (2013).
  13. Wu, C. W., et al. Intraoperative neuromonitoring for the early detection and prevention of RLN traction injury in thyroid surgery: A porcine model. Surgery. 155 (2), 329-339 (2014).
  14. Lin, Y. C., et al. Electrophysiologic monitoring correlates of recurrent laryngeal nerve heat thermal injury in a porcine model. Laryngoscope. 125 (8), E283-E290 (2015).
  15. Wu, C. W., et al. Recurrent laryngeal nerve safety parameters of the Harmonic Focus during thyroid surgery: Porcine model using continuous monitoring. Laryngoscope. 125 (12), 2838-2845 (2015).
  16. Dionigi, G., et al. Severity of Recurrent Laryngeal Nerve Injuries in Thyroid Surgery. World Journal of Surgery. 40 (6), 1373-1381 (2016).
  17. Wu, C. W., et al. Optimal stimulation during monitored thyroid surgery: EMG response characteristics in a porcine model. Laryngoscope. 127 (4), 998-1005 (2017).
  18. Dionigi, G., et al. Safety of LigaSure in recurrent laryngeal nerve dissection-porcine model using continuous monitoring. Laryngoscope. 127 (7), 1724-1729 (2017).
  19. Lu, I. C., et al. Safety of high-current stimulation for intermittent intraoperative neural monitoring in thyroid surgery: A porcine model. Laryngoscope. , (2018).
  20. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 126 (4), 1014-1019 (2016).
  21. Wu, C. -. W., et al. Intraoperative neural monitoring in thyroid surgery: lessons learned from animal studies. Gland Surgeryery. 5 (5), 473-480 (2016).
  22. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. , (2016).
  23. Scott, A. R., Chong, P. S., Brigger, M. T., Randolph, G. W., Hartnick, C. J. Serial electromyography of the thyroarytenoid muscles using the NIM-response system in a canine model of vocal fold paralysis. Annals of Otology, Rhinology, and Laryngology. 118 (1), 56-66 (2009).
  24. Puram, S. V., et al. Vocal cord paralysis predicted by neural monitoring electrophysiologic changes with recurrent laryngeal nerve compressive neuropraxic injury in a canine model. Head Neck. 38, E1341-E1350 (2016).
  25. Puram, S. V., et al. Posterior cricoarytenoid muscle electrophysiologic changes are predictive of vocal cord paralysis with recurrent laryngeal nerve compressive injury in a canine model. Laryngoscope. 126 (12), 2744-2751 (2016).
  26. Brauckhoff, K., et al. Injury mechanisms and electromyographic changes after injury of the recurrent laryngeal nerve: Experiments in a porcine model. Head Neck. 40 (2), 274-282 (2018).
  27. Brauckhoff, K., Aas, T., Biermann, M., Husby, P. EMG changes during continuous intraoperative neuromonitoring with sustained recurrent laryngeal nerve traction in a porcine model. Langenbeck’s Archives of Surgery. 402 (4), 675-681 (2017).
  28. Schneider, R., et al. A new vagal anchor electrode for real-time monitoring of the recurrent laryngeal nerve. The American Journal of Surgery. 199 (4), 507-514 (2010).
  29. Kim, H. Y., et al. Impact of positional changes in neural monitoring endotracheal tube on amplitude and latency of electromyographic response in monitored thyroid surgery: Results from the Porcine Experiment. Head Neck. 38, E1004-E1008 (2016).
  30. Sterpetti, A. V., De Toma, G., De Cesare, A. Recurrent laryngeal nerve: its history. World Journal of Surgery. 38 (12), 3138-3141 (2014).
  31. Kaplan, E. L., Salti, G. I., Roncella, M., Fulton, N., Kadowaki, M. History of the recurrent laryngeal nerve: from Galen to Lahey. World Journal of Surgery. 33 (3), 386-393 (2009).
  32. Lu, I. C., et al. In response to Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 127 (1), e51-e52 (2017).

Play Video

Cite This Article
Wu, C., Huang, T., Chen, H., Chen, H., Tsai, T., Chang, P., Lin, Y., Tseng, H., Hun, P., Liu, X., Sun, H., Randolph, G. W., Dionigi, G., Chiang, F., Lu, I. Intra-Operative Neural Monitoring of Thyroid Surgery in a Porcine Model. J. Vis. Exp. (144), e57919, doi:10.3791/57919 (2019).

View Video