Summary

酒精中毒在认知控制过程中对前小管神经同步的破坏

Published: February 06, 2019
doi:

Summary

本实验采用解剖约束的磁脑电图 (ameg) 方法, 在认知控制参与过程中, 作为急性酒精中毒的功能, 检查大脑振荡动力学和远程功能同步。

Abstract

决策依赖于分布的动态交互, 主要是额叶大脑区域。功能磁共振成像 (fmri) 研究的大量证据表明, 前扣带带 (acc) 和额叶外侧皮质 (ltpfc) 是辅助认知控制的重要节点。然而, 由于其有限的时间分辨率, fmri 不能准确地反映其假定的相互作用的时间和性质。本研究将时间精确磁脑电图 (meg) 信号的分布式源建模与结构 mri 结合起来, 以 “脑电影” 的形式出现: (1) 估计认知控制所涉及的皮层区域 (“在哪里”), (2) 特征他们的时间序列 (“当”), 和 (3) 量化他们的神经相互作用的振荡动力学实时。stroop 干扰与冲突检测期间 acc 中更大的事件相关的 theta (4-7 hz) 功率有关, 随后在集成和准备反应过程中对 acc 和 latpfc 的认知需求保持持续敏感。相位锁定分析显示, 在引起冲突的不协调试验中, 这些区域之间的协同振荡相互作用表明它们在 theta 波段的神经同步增加。这些结果证实, 在认知控制过程中, 这种振荡是将自上而下的影响结合起来所需的远程同步的基础。meg 直接反映神经活动, 这使得它适合于药理操作, 而 fmri 是敏感的血管活性混淆。在本研究中, 健康的社会饮酒者在主题内设计中给予适度的酒精剂量和安慰剂。急性中毒减弱了该策略的力量, 以减弱为 stroop 冲突和失调的共同振荡之间的 acc 和 latpfc, 证实酒精是有害的神经同步潜移默化的认知控制。它干扰目标导向的行为, 可能导致缺乏自制力, 导致强迫饮酒。总之, 该方法可以提供对认知处理过程中的实时交互的洞察, 并可以描述相关神经网络对药理挑战的选择性敏感性。

Introduction

本研究的总体目标是探讨急性酒精中毒对认知控制过程中大脑振荡动力学时空变化和长期功能整合的影响。采用多模态成像方法, 结合了磁脑成像 (meg) 和结构磁共振成像 (mri), 以实现高时间精度和交互式系统级别的决策神经基础。

灵活的行为使人们能够适应不断变化的环境需求, 并根据自己的意图和目标在不同的任务和要求之间进行战略转换。抑制自动反应的能力有利于目标相关但非习惯性的行动是认知控制的一个重要方面。大量证据表明, 它是由一个主要的额叶皮质网络, 与前扣带回皮层 (acc) 作为一个中心节点在这个互动网络1,2,3,4。虽然 acc 和额叶侧皮质之间丰富的解剖连接描述得很好,这些区域之间在认知控制过程中的沟通功能特征, 反应选择和执行, 是鲜为人知的。

影响很大的冲突监测理论7,8提出认知控制产生于内侧和侧向前额皮质之间的动态相互作用。此帐户声称 acc 监视竞争表示之间的冲突, 并与额叶外侧皮层 (latpfc) 进行响应控制和优化性能。然而, 这个帐户主要是基于功能 mri (fmri) 研究使用血液氧合水平相关 (bold) 信号。fmri-bold 信号是一种很好的空间映射工具, 但它的时间分辨率有限, 因为它反映了神经血管耦合介导的区域血流动力学变化。因此, bold 信号的变化在比基础神经事件 (以毫秒为单位) 9 的时间尺度 (以秒为单位)展开。此外, bold 信号对酒精的血管活性作用 10敏感, 可能不能准确地反映神经变化的大小, 这使得它不太适合急性酒精中毒的研究。因此, 假定的前额叶皮质和它对酒精中毒的敏感性之间的假定相互作用需要通过以时间精确的方式记录神经事件的方法来检查。meg 具有出色的时间分辨率, 因为它直接反映突触后电流。这里采用的解剖约束 meg (amegg) 方法是一种多模态方法, 它将 meg 信号的分布式源建模与结构 mri 相结合。它允许估计与冲突和 bever无休止的大脑振荡变化发生的地点, 并了解所涉及的神经成分的时间序列 (“何时”)

决策依赖于动态参与处理对认知控制的更高需求的分布式大脑区域的交互。估计两个皮质区域之间远程同步中与事件相关的变化的一种方法是计算它们的相位耦合作为其共同振荡 1112 的指数。本研究采用相位锁定分析的方法, 通过研究 acc 和 latpfc 之间的共振荡相互作用, 检验冲突监测理论的基本原则。teta 范围 (4-7 hz) 中的神经振荡与认知控制有关, 并被认为是支持自上而下认知处理所需的远程同步的基本机制 13,14, 15,16。它们是在前额叶区域产生的任务困难, 并显著减弱的急性酒精中毒17,18,19, 20.

长期过量饮酒与一系列认知缺陷有关, 前额电路尤其受到 21,22的影响。急性酒精中毒在难度增加、模糊或引起反应不兼容的情况下, 对认知控制有害.通过影响决策, 酒精可能会干扰目标导向的行为, 可能导致自制力差和饮酒增加, 也可能导致交通或与工作有关的危害25,26, 27.本研究采用 a/meg 方法测量了具有良好时间分辨率的主要执行区域之间在 theta 波段和同步的振荡活动。酒精对 acc 和 latpfc 之间的协同振荡的影响被研究为 stroop 干扰任务引起的冲突的函数。我们假设, 认知需求的增加与更大的功能同步有关, 酒精引起的内侧和外侧前额皮质同步活动的失调是认知控制中的损伤的基础。

Protocol

这一实验协议已得到加州大学圣地亚哥分校人类科目保护委员会的批准。 1. 人的主体 招募健康的右手成人志愿者, 征得他们的同意, 并根据包容/排除标准对他们进行筛选。请注意:在这项研究中, 20名年轻、健康的人 (平均±标准偏差 [sd] 年龄 = 25.3±4.4 岁) 被招募, 其中包括8名妇女, 她们饮酒适度, 从未因吸毒或酗酒罪接受过治疗或逮捕, 她们没有报告与酒?…

Representative Results

行为结果表明, stroop 任务成功地操纵了响应干扰, 因为在不协调的试验中, 响应精度最低, 响应时间最长 (图 6)。酒精中毒降低了准确性, 但不影响反应时间18。 用 amegg 方法揭示的 theta 频段活动的时空序列总体上与这类任务中普遍接受的认知功能模型一致。正如大脑电影 (电影 2</stro…

Discussion

本研究采用的多模态成像方法包括时间精确 meg 信号的分布式源建模, 以及从每个参与者的结构 mri 中得到的逆估计的空间约束。ameg 方法结合了这些技术的优势, 提供了对振荡动力学时空阶段和远程整合顺从的认知控制的洞察。与其他神经成像技术 (如 fmri-bold) 相比, 这种方法提供了更高的时间精度, fmri-bold 的时间分辨率达到了秒级, 因为它通过神经血管耦合9对神经变化的间接敏感性.<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院的支持 (r01-aa016624)。我们感谢 sanja kovacevic 博士的重要贡献。

Materials

Elekta Neuromag Elekta Magnetoencephalography system
1.5 T GE EXCITE HG General Electric Magnetic Resonance Imaging scanner
Gold Cup Electrodes OpenBCI Electroencephalography electrodes for optional simultaneous EEG recording
Prep Check Impedance Meter General Devices Check electrode impedances
HPI Coils Elekta Head position indicator coils for co-registration
Alcotest Draeger Breathalyzer
Fiber Optic Response Pad Current Designs, Inc MEG-compatible response pad
Grey Goose Vodka Bacardi Vodka is used during the alcohol session
Orange Juice Naked Orange juice is used as the beverage during the placebo session as well as mixed with vodka during the alcohol session
Discover Drug Test Card American Screening Corp Multi-screen drug test
QED Saliva Alcohol Test OraSure Technologies Saliva alcohol test
Urine Hcg Test Strips Joylive Pregnancy test
Short Michigan Alcohol Screening Test Selzer et al., 1975 Alcoholism screening questionnaire
Zuckerman Sensation Seeking Scale Zuckerman, 1971 Questionnaire: disinhibitory, novelty-seeking, and socialization traits
Eysenck Impulsivity Inventory Eysenck & Eysenck, 1978 Questionnaire: impulsivity traits
Eysenck Personality Questionnaire Eysenck & Eysenck, 1975 Questionnaire: personality traits
Biphasic Alcohol Effects Scale  Martin et al., 1993 Questionnaire: subjective experience of the effects of alcohol

References

  1. Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J., Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition. 56 (2), 129-140 (2004).
  2. Shenhav, A., Cohen, J. D., Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nature Neuroscience. 19 (10), 1286-1291 (2016).
  3. Walton, M. E., Croxson, P. L., Behrens, T. E., Kennerley, S. W., Rushworth, M. F. Adaptive decision making and value in the anterior cingulate cortex. Neuroimage. 36 Suppl 2, T142-T154 (2007).
  4. Heilbronner, S. R., Hayden, B. Y. Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annual Review of Neuroscience. 39, 149-170 (2016).
  5. Barbas, H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin. 52 (5), 319-330 (2000).
  6. Morecraft, R. J., Tanji, J., Vogt, B. A. . Cingulate neurobiology and disease. , 114-144 (2009).
  7. Botvinick, M. M. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience. 7 (4), 356-366 (2007).
  8. Carter, C. S., van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience. 7 (4), 367-379 (2007).
  9. Buxton, R. B. . Introduction to Functional Magnetic Resonance Imaging. , (2002).
  10. Rickenbacher, E., Greve, D. N., Azma, S., Pfeuffer, J., Marinkovic, K. Effects of alcohol intoxication and gender on cerebral perfusion: an arterial spin labeling study. Alcohol. 45 (8), 725-737 (2011).
  11. Fell, J., Axmacher, N. The role of phase synchronization in memory processes. Nature Reviews Neuroscience. 12 (2), 105-118 (2011).
  12. Lachaux, J. P., Rodriguez, E., Martinerie, J., Varela, F. J. Measuring phase synchrony in brain signals. Human Brain Mapping. 8 (4), 194-208 (1999).
  13. Cavanagh, J. F., Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences. 18 (8), 414-421 (2014).
  14. Sauseng, P., Griesmayr, B., Freunberger, R., Klimesch, W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews. 34 (7), 1015-1022 (2010).
  15. Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K., Halgren, E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of Neuroscience. 25 (3), 604-613 (2005).
  16. Halgren, E., et al. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration. Neuropsychologia. 76, 108-124 (2015).
  17. Rosen, B. Q., Padovan, N., Marinkovic, K. Alcohol hits you when it is hard: Intoxication, task difficulty, and theta brain oscillations. Alcoholism: Clinical and Experimental Research. 40 (4), 743-752 (2016).
  18. Kovacevic, S., et al. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication. PLoS One. 7 (8), e43957 (2012).
  19. Marinkovic, K., Rosen, B. Q., Cox, B., Kovacevic, S. Event-related theta power during lexical-semantic retrieval and decision conflict is modulated by alcohol intoxication: Anatomically-constrained MEG. Frontiers in Psychology. 3 (121), (2012).
  20. Beaton, L. E., Azma, S., Marinkovic, K. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge. PLoS One. 13 (1), e0191200 (2018).
  21. Oscar-Berman, M., Marinkovic, K. Alcohol: effects on neurobehavioral functions and the brain. Neuropsychology Review. 17 (3), 239-257 (2007).
  22. Le Berre, A. P., Fama, R., Sullivan, E. V. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic Alcoholism: A Critical Review to Inform Future Research. Alcoholism: Clinical and Experimental Research. 41 (8), 1432-1443 (2017).
  23. Marinkovic, K., Rickenbacher, E., Azma, S., Artsy, E. Acute alcohol intoxication impairs top-down regulation of Stroop incongruity as revealed by blood oxygen level-dependent functional magnetic resonance imaging. Human Brain Mapping. 33 (2), 319-333 (2012).
  24. Marinkovic, K., Rickenbacher, E., Azma, S., Artsy, E., Lee, A. K. Effects of acute alcohol intoxication on saccadic conflict and error processing. Psychopharmacology (Berl). 230 (3), 487-497 (2013).
  25. Field, M., Wiers, R. W., Christiansen, P., Fillmore, M. T., Verster, J. C. Acute alcohol effects on inhibitory control and implicit cognition: implications for loss of control over drinking. Alcoholism: Clinical and Experimental Research. 34 (8), 1346-1352 (2010).
  26. Fillmore, M. T. Drug abuse as a problem of impaired control: current approaches and findings. Behavioral and Cognitive Neuroscience Reviews. 2 (3), 179-197 (2003).
  27. Hingson, R., Winter, M. Epidemiology and consequences of drinking and driving. Alcohol Reseach & Health. 27 (1), 63-78 (2003).
  28. Selzer, M. L., Vinokur, A., Van Rooijen, L. A self-administered Short Michigan Alcoholism Screening Test (SMAST). Journal of Studies on Alcohol. 36 (1), 117-126 (1975).
  29. Babor, T., Higgins-Biddle, J. S., Saunders, J. B., Monteiro, M. G. . AUDIT: The Alcohol use disorders identification test: Guidelines for use in primary care. , (2001).
  30. Rice, J. P., et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcoholism: Clinical and Experimental Research. 19 (4), 1018-1023 (1995).
  31. Eysenck, H. J., Eysenck, S. B. G. . Manual of the Eysenck Personality Questionnaire. , (1975).
  32. Eysenck, S. B., Eysenck, H. J. Impulsiveness and venturesomeness: their position in a dimensional system of personality description. Psychological Reports. 43 (3 Pt 2), 1247-1255 (1978).
  33. Maltzman, I., Marinkovic, K., Begleiter, H., Kissin, B. . The Pharmacology of Alcohol and Alcohol Dependence. , 248-306 (1996).
  34. Martin, C. S., Earleywine, M., Musty, R. E., Perrine, M. W., Swift, R. M. Development and validation of the Biphasic Alcohol Effects Scale. Alcoholism: Clinical and Experimental Research. 17 (1), 140-146 (1993).
  35. Liu, H., Tanaka, N., Stufflebeam, S., Ahlfors, S., Hamalainen, M. Functional Mapping with Simultaneous MEG and EEG. Journal of Visualized Experiments. (40), (2010).
  36. Lee, A. K., Larson, E., Maddox, R. K. Mapping cortical dynamics using simultaneous MEG/EEG and anatomically-constrained minimum-norm estimates: an auditory attention example. Journal of Visualized Experiments. (68), e4262 (2012).
  37. Balderston, N. L., Schultz, D. H., Baillet, S., Helmstetter, F. J. How to detect amygdala activity with magnetoencephalography using source imaging. Journal of Visualized Experiments. (76), (2013).
  38. Breslin, F. C., Kapur, B. M., Sobell, M. B., Cappell, H. Gender and alcohol dosing: a procedure for producing comparable breath alcohol curves for men and women. Alcoholism: Clinical and Experimental Research. 21 (5), 928-930 (1997).
  39. Marinkovic, K., Cox, B., Reid, K., Halgren, E. Head position in the MEG helmet affects the sensitivity to anterior sources. Neurology and Clinical Neurophysiology. , 30 (2004).
  40. Dale, A. M., Sereno, M. I. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience. 5, 162-176 (1993).
  41. Dale, A. M., Fischl, B., Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 9 (2), 179-194 (1999).
  42. Fischl, B., Sereno, M. I., Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 9 (2), 195-207 (1999).
  43. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomedical Engineering Online. 9, 45 (2010).
  44. Kybic, J., et al. A common formalism for the integral formulations of the forward EEG problem. IEEE Transactions on Medical Imaging. 24 (1), 12-28 (2005).
  45. Dale, A. M., et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 26 (1), 55-67 (2000).
  46. Marinkovic, K. Spatiotemporal dynamics of word processing in the human cortex. The Neuroscientist. 10 (2), 142-152 (2004).
  47. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience. , 156869 (2011).
  48. Delorme, A., Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods. 134, 9-21 (2004).
  49. Gramfort, A., et al. MNE software for processing MEG and EEG data. Neuroimage. 86, 446-460 (2014).
  50. Lin, F. H., et al. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain. Neuroimage. 23 (2), 582-595 (2004).
  51. Fischl, B., Sereno, M. I., Tootell, R. B., Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping. 8 (4), 272-284 (1999).
  52. Maris, E., Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods. 164 (1), 177-190 (2007).
  53. Marinkovic, K., et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron. 38 (3), 487-497 (2003).
  54. Nachev, P. Cognition and medial frontal cortex in health and disease. Current Opinion in Neurology. 19 (6), 586-592 (2006).
  55. Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., Rushworth, M. F. Optimal decision making and the anterior cingulate cortex. Nature Neuroscience. 9 (7), 940-947 (2006).
  56. Aron, A. R., Robbins, T. W., Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences. 18 (4), 177-185 (2014).
  57. Erika-Florence, M., Leech, R., Hampshire, A. A functional network perspective on response inhibition and attentional control. Nature Communications. 5, 4073 (2014).
  58. D’Esposito, M., Postle, B. R. The cognitive neuroscience of working memory. Annual Review of Psychology. 66, 115-142 (2015).
  59. Hasselmo, M. E., Stern, C. E. Theta rhythm and the encoding and retrieval of space and time. Neuroimage. 85 Pt 2, 656-666 (2014).
  60. Womelsdorf, T., Johnston, K., Vinck, M., Everling, S. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the United States of America. 107 (11), 5248-5253 (2010).
  61. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences. 9 (10), 474-480 (2005).
  62. Canolty, R. T., et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 313 (5793), 1626-1628 (2006).
  63. Varela, F., Lachaux, J. P., Rodriguez, E., Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience. 2 (4), 229-239 (2001).
  64. Hanslmayr, S., et al. The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience. 20 (2), 215-225 (2008).
  65. Niendam, T. A., et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience. 12 (2), 241-268 (2012).
  66. Sadaghiani, S., D’Esposito, M. Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness. Cerebral Cortex. 25 (9), 2763-2773 (2015).
  67. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., Petersen, S. E. A dual-networks architecture of top-down control. Trends in Cognitive Sciences. 12 (3), 99-105 (2008).
  68. Bullmore, E., Sporns, O. The economy of brain network organization. Nature Reviews Neuroscience. 13 (5), 336-349 (2012).
  69. Fornito, A., Zalesky, A., Breakspear, M. The connectomics of brain disorders. Nature Reviews Neuroscience. 16 (3), 159-172 (2015).
  70. Anderson, B. M., et al. Functional imaging of cognitive control during acute alcohol intoxication. Alcoholism: Clinical and Experimental Research. 35 (1), 156-165 (2011).
  71. Kareken, D. A., et al. Family history of alcoholism interacts with alcohol to affect brain regions involved in behavioral inhibition. Psychopharmacology (Berl). 228 (2), 335-345 (2013).
  72. Schuckit, M. A., et al. fMRI differences between subjects with low and high responses to alcohol during a stop signal task. Alcoholism: Clinical and Experimental Research. 36 (1), 130-140 (2012).
  73. Nikolaou, K., Critchley, H., Duka, T. Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response. PLoS One. 8 (9), e76649 (2013).
  74. Gan, G., et al. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex. Biology Psychiatry. 76 (9), 698-707 (2014).
  75. Ehlers, C. L., Wills, D. N., Havstad, J. Ethanol reduces the phase locking of neural activity in human and rodent brain. Brain Research. 1450, 67-79 (2012).
  76. Goldstein, R. Z., Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience. 12 (11), 652-669 (2011).
check_url/cn/58839?article_type=t

Play Video

Cite This Article
Marinkovic, K., Beaton, L. E., Rosen, B. Q., Happer, J. P., Wagner, L. C. Disruption of Frontal Lobe Neural Synchrony During Cognitive Control by Alcohol Intoxication. J. Vis. Exp. (144), e58839, doi:10.3791/58839 (2019).

View Video